United States Patent ;9
White, Jr. et al.

US005694534A
11 Patent Number: 5,694,534

(451 Date of Patent: Dec. 2, 1997

[54] APPARATUS STORING A PRESENTATION
OF TOPOLOGICAL STRUCTURES AND
METHODS OF BUILDING AND SEARCHING
THE REPRESENTATION

[75] Inventors: Marvin S. White, Jr., Palo Alto;
George E. Loughmiller, Jr., Cupertino,
both of Calif.

[73] Assignee: Etak, Inc., Menlo Park, Calif.

[21] Appl. No.: 766,646
[22] Filed: Dec. 13, 1996

Related U.S. Application Data

[63] Continuation of Ser. No. 599,446, Jan. 19, 1996, abandoned,
which is a continuation of Ser. No. 455,827, Dec. 15, 1989,
abandoned, which is a continuation of Ser. No. 319,810,
Mar. 6, 1989, abandoned, which is a continuation of Ser. No.
140,881, Jan. 6, 1988, abandoned, which is a continuation of
Ser. No. 759,036, Jul. 25, 1985, abandoned.

[51] Int. CL®

[52] U.S. CL 395/140; 395/133

[58] Field of Search 395/133, 140,
395/141, 121, 128; 364/449, 474.28, 603,
615; 340/988, 995

GOGT 9/00

[561 References Cited
U.S. PATENT DOCUMENTS

4,343,037 8/1982 Bolton
4,360,876 11/1982 Girault et al. ..cccoeemvercreanne
4445,186 4/1984 Caron et al.
4,489,389 12/1984 Beckwith et al. -
4511975 4/1985 Miura et al. ...coecvernervnnreanse

OTHER PUBLICATIONS

Topoloegical Principles in Cartography, James P. Corbett,
Technical Paper 48, U.S. Department of Commerce, Bureau
of the Census, Dec. 1979,

364/521 X

BOUNDARY OF

“CARGuide—On-board Computer for Automobile Route
Guidance,” M. Sugie, O. Menzilcioglu, H.T. Kung, AFIPS
Conference Proceedings, 1984 National Computer Confer-
ence.

“A Tiger for Tomorrow,” Roland H. Moore, Joint Sympo-
sium for Urban Data Management Systems and the Spatially
Oriented Referencing Systems Association, The Hague,
Netherlands, Jun. 3, 1985.

“Two-Dimensional Closed Surface Model for Processing
Geographical Information with a Computer,” Mario Naka-
mori, Collection of Lecture Papers from the 19th National
Conference, Information Processing Society of Japan, Aug,
22-24, 1978. (In Japancse, with English Translation pro-
vided.)

“Algorithm for Studying Topological Characteristics of a
Complex in a Closed Surface and a Data Structure,” Mario
Nakamori, Collection of Lecture Papers in the National
Conference of the Information Division of the Institute of
Electronics and Communication Engineers, Aug. 1977. (In
Japanese, with English Translation provided.)

Primary Examiner—Heather R. Herndon

Assistant Examiner—Stephen Hong

Attorney, Agent, or Firm—Fliesler, Dubb, Meyer & Lovejoy
LLP

(571 ABSTRACT

A data storage medium storing a representation of a topo-
logical structure having topological features, on which is
stored a digital data base including a plurality of carrier
blocks of data representing the topological features t a given
level of detail, each one of the camier blocks being a
representation of a carrier which is a closed set containing in
its interior a given topological object. Also disclosed are
methods for building the carrier blocks, for building a
hierarchy of carrier blocks, and for searching the digital data
base at all hierarchical levels.

20 Claims, 16 Drawing Sheets

FUSED 2-CELLS C'% +

X3 BOUNDARY INCLUDI1NG
SUB-COMPLEX OO = ESSENTIAL O-CELLS FUSED +CELLS C''; AND
X3 O = NON-ESSENTIAL O-CELLS ESSENTIAL O-CELLS
= 1 2 =] &)
c!
() //— i //—C' zi
/ \)
—_— ¢ 1
STEPS STEPS ¢t
o
e
b—o—o—m L, &
1) 3

5,694,534

;914
© x9| dwo? |puolsusuwiq-g VY
s swia| |poiydoibodo| ur dop vy
g
5 X1 “MO “AN :8}|89—
M, } 'a'p'2'q D i8||90 |

U0} 3| 9%s—
y ‘g gL sieo—p ¥

U.S. Patent

U.S. Patent Dec. 2, 1997 Sheet 2 of 16 5,694,534

C3 AN
1
Ci\ C; FUSION /\
0 0
Cq C3 0 C3
FIG. 2A
Clz.
‘ FUSION /
\\\ \v
d“ \
2 2-CELLS
1 2-CELLS

FIG. 2B

U.S. Patent Dec. 2, 1997 Sheet 3 of 16 5,694,534

O
C) b
a b c
TOPOLOGICALLY EQUIVALENT

FI6. 2C

\ ECUT OR HOLE
a b

TOPOLOGICALLY DIFFERENT

FIG. 20

5,694,534

Sheet 4 of 16

Dec. 2, 1997

U.S. Patent

e g€ 914
SINWN | ¥3INIOd | ST130[ST139| ST130
1S —C - 0] (hygpeyzy
{rveviyiyg = ¢
80" o
W X 1
Mx
X
AN X SLITULS
[7 v.x (v207) 5
X JeeX ¢ ._m>u.._\ W
Ve 914 X
A9070d0L HITHAVD
Npg JUNLOMLS dvi TYLI9IA
\
0
"]
, 0t 9
P | NN | ——v
Sy _ (SIVI¥3L¥V)T T3ATT .
(STVI¥ALYY) ¢ AT Ly T~ \ E "9I4
X=" .. WX (SAVMIRYA)L T3ATT X

U.S. Patent Dec. 2, 1997 Sheet 5 of 16 5,694,534
O0-CELL

+CELL
2—-CELL

ARBITRARY GEOMETRIC STRUCTURE

FI6. 3C-1

CARRIER (CLOSED SET)

ARBITRARY
GEOMETRIC
STRUCTURE

F16. 30-2

U.S. Patent Dec. 2,197 Sheet 6 of 16 5,694,534

q
108 | 201
) 6 c2
________// J
———T—C%.(STEP 5)
205 | 202
13
=z
2042203
: O
Ao \c?..(STEP 5-SECOND PASS)
FIG. 44-1
(— GBF/DIME CODING FORM |
)STREET xaue |FROMI 1O LEFT |RIGHT LEFT RIGHT
NODE | NODE [|BLOCK | BLOCK || ADDRESSES | ADDRESSES
/ OAK AV. | 11 [10 [[305 {302 | 301305 300-306
_OAK AV. [10 [4 [/ 305 [301 307-315 308-318
NURVE ST.L 10 [9 301 | 302 — -
JURVE ST.] 9 [8 [[301 | 302 1-9 2—10
CURVE ST 8 |7 [301 | 302 — —
~ MAIN ST.| 13 |6 [[205 | 202 301315 300—314
"PINE ST. | 12 |7 | 302 | 205 301309 300—304
PINE ST. | 7 [5 [301 | 205 31315 306-314
.ﬁ;ELM sT. | 4 [5 |107 | 301 145-179 144—178
N ELM ST. -
MAPLE ST.| 11 | 12 [[302 | 303 147-163 146—164
MAPLE ST.[12 113 11205 204H 201-209 200-208

FIG. 4A-2

U.S. Patent Dec. 2, 1997

Sheet

7 of 16

BUILDING CARRIER BLOCKS

GENERAL

V/f‘4B—1

PROVIDING
OPEN SETS

ACCESSING |~ %7

OPEN SETS

GENERATING
CARRIER
BLOCKS

/r4Bﬂ4
STORING
CARRIER
BLOCKS

FI6. 48

FIG.

BY ACCRETION

40-1~

SET k

j

5,694,534

=

402~

SELECT
A 2-CELL

40"3 \

INCREMENT
INITIALIZE A,

40-4 aN

CONSTRUCT
SUBCOMPLEX X,

4C-5

ADD 2-CELL
ADOIN 0-,+-CELL

GO TO
4C-9~JADD A, TO P
STORE Xy

U.S. Patent

Dec. 2, 1997 Sheet 8 of 16 5,694,534
NEXT LEVEL
GENERAL SPECIFIC
PROVIDING 5A-1 FUSE 58-1
CARRIER |~ 2-CELLS —
BLOCKS
IDENTIFY - 58-2
ACCESSING | -~ 54-2 1~COMPLEX
CARRIER - (SUB)
BLOCKS »
GENERATING | - 54-3 CONSTRUCT |36~
ANOTHER | CHAINS
CARREIR BLOCK
FUSE | %4
STORING | - 54~4 CHAINS
OTHER
CARRIER BLOCK
CREATE | — 3985

FIG. 54

CHAINS O-CELLS

FIG. 58

5,694,534

Sheet 9 of 16

Dec. 2, 1997

U.S. Patent

L £]

ST130-0 TTVILN3SS3

ONv |0 ST130- @3snd
ONIGNTONI AMYANNOS
+ 4.9 §7130-¢ g3sn4

G+
Sd3Ls

!
Nn

Jg 914
4
f—e—6—1H1
()
®
()
()]
o.\\ O
—c—6—H1

ST130—-0 TTVILNISSI-NON
ST130-0 IVILIN3SS3

£

40 AYVANNOE -

¢+
Sdi1S

oo

£X
X31dNOD-8NS

U.S. Patent Dec. 2, 1997 Sheet 10 of 16 5,694,534

HIERARCHY

INITIALIZE 64A-1
CURRENT e
COMPLEX Y

=

CREATE AND 6A-2
STORE COMPLEX Y' |~
USING NEXT LEVEL

6A-3

EXCEED

THRESHOLD
?

YES

FI6. b6A

U.S. Patent

Dec. 2, 1997 Sheet 11 of 16

SEARCH ALGORITHM

TOP DOWN

INITIALIZE | — 741
TWO LISTS

SET SECOND LIST 7A-2
+ "
HIER.-LEVEL o

SELECT 7A-3
N-CELLS -

744

CURRENT
LEVEL
MOST

DETAILED

?

YES

, EXIT
REPLACE
SECOND LIST ‘\\\»7”_5

DECREMENT 746
LEVEL -

GO TO | 747

FI6. 74

3,694,534

5,694,534

Sheet 12 of 16

Dec. 2, 1997

U.S. Patent

A2010d01 ¥3ITHYVI
JNLONYLS dVN TVLIIOIG

\

A/ 914

(SIVI¥3LYY) T 13ATT

(SAVMIFY4) L 13IATT

(STvIy3Lyy) z 13A

U.S. Patent

Dec. 2, 1997 Sheet 13 of 16

SEARCH ALGORITHM

ACROSS
INITIALIZE | %1
TWO LISTS
8A-2
SET SECOND LIST
SELECT 843
N—CELLS
844
N-CELL
on NO
BOUNDARY
?
Y
EXIT
ADD ADJACENT
CARRIER TO b\\\\-gu-5
SECOND LIST
GO TO 646

FI6. 64

5,694,534

5,694,534

U.S. Patent Dec. 2, 1997 Sheet 14 of 16
COVERAGE AREA

PRIOR TO (RANGE)

ACROSS SEARCH ~—_ CARRIERS
(CORRESPONDING T0
CARRIER BLOCKS)

P(OR DRP)

CARRIERS

- NEW COVERAGE AREA
(E.G., VEHICLE MOVED)

P OR DRP (NEW)

PASS 1 OF
ALGORITHM

----- - NEW CARRIER
y*" "FOUND BY

PASS 2 OF ! ITERATING
ALGORTTHM |
FIG. 68 COMPLETED
UPDATE
AT EXIT OF ~
ALGORITHM |
/

U.S. Patent Dec. 2, 1997 Sheet 15 of 16

SEARCH ALGORITHM

BOTTOM UP

INITIALIZE
TWO LISTS

Pl

SET SECOND LIST

/.9A-2

SELECT
N-CELLS

Pt

CURRENT
LEVEL

GA-4

YES

THE
RQ,OT

NO

REPLACE
CURRENT
CARRIER BLOCKS

EXIT

94-5
/

FIG. 94

5,694,534

Sheet 16 of 16 5,694,534

U.S. Patent Dec. 2, 1997
CARRIERS
LEVEL i~1
\
j \ |
[1 - BOUNDARY INCLUDED
i’ \ AT THIS LEVEL
i' \
i !
| \
j \
:' N
i = N\
_ \
\ \
-\ \
LEVEL i \ \
\ ’/./”

tBOUNDARY NOT INCLUDED
IN CARRIER BLOCK AT THIS
LEVEL

FI6. 10

5,694,534

1

APPARATUS STORING A PRESENTATION
OF TOPOLOGICAL STRUCTURES AND
METHODS OF BUILDING AND SEARCHING
THE REPRESENTATION

This application is a Continuation of Ser. No. 08/599,
440, filed Jan. 19, 1996, now abandoned, which is a Con-
tinuation of Ser. No. (7/455,827, filed Dec. 15, 1989, now
abandoned, which is a Continuation of Ser. No. 07/319.,810,
filed Mar. 6, 1989, now abandoned, which is Continuation of
Ser. No. 07/140,881, filed Jan. 6, 1988, now abandoned,
which is a continuation of Ser. No. 06/759,036, filed Jul. 25,
1985, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to apparatus stor-
ing a representation of topological structures and methods of
building and searching the representation. More particularly,
the present invention relates to the storage of, and methods
of building and searching, data bases representing topologi-
cal structures, including geometric structures, for effectively
processing the data and presenting the data, such as on a
display.

2. Background Art

Representations of a wide variety of topological
structures, including geometric structures, are used for many
purposes, such as to convey information. These representa-
tions include maps of geographical areas, layouts and masks
of integrated circuits, mechanical drawings, and other geo-
metric representations. In this age of computer technology,
these representations typically are provided in the form of
digital data bases that are stored in memory and processed
by a computer for a variety of purposes. One purpose may
be to read out the information on, for example, a display.
Another purpose might be to update the digital data base in
view of changes that are made to the underlying geometric
stmcture. For example, if a new street is added to a
neighborhood, the corresponding digital data base portion of
the map stored in memory should be updated to include that
street.

Moreover, in a given computer system, the amount of
memory that is available for the starage of data usually is
limited. Accordingly, it is advantageous to store efficiently a
representation of a given geometric structure so as to mini-
mize the memory occupied by the digital data base.
Furthermore, it may be important to access quickly and in
sequence portions of the digital data base so as to be able to
properly display part of the geometric structure. For
example, in two co-pending patent applications, Ser, No,
06/618,041, now U.S. Pat. No. 4,796,191, filed Jun. 7, 1984
and Ser. No. 06/663.862, now U.S. Pat. No. 4,914,605, filed
Oct. 22, 1984, and assigned to the assignee of the present
invention, a computerized vehicle navigation system and
moving map display are disclosed, respectively. The
on-board computer of the vehicle calculates the position of
the vehicle and accesses the digital map data base to show
to the driver the vehicle position via a display of a map. As
the vehicle moves, its position on the map changes and the
area of displayed map changes.

In order to accomplish all of the above, the entire repre-
sentation of a given topological or geometric structure
should be divided into small pieces, so that the correspond-
ing digital data base portions stored in memory can be
effectively processed or displayed. In one prior technique, a
digital data base is produced and stored by first providing an

10

15

25

35

45

55

65

2

electronic grid overlay of equal-sized grid cells on the
representation, such as the map. Each cell of the grid overlay
is then optically scanned and the resulting data digitized and
stored at a given location in memory as a block of data.

One problem with the above grid overlay approach is that
the memory space is inefficiently utilized. The reason for
this is that a given cell of the grid may overlay a detailed
street netwark while another cell of the grid may overlay no
street network or a much less detailed street network. Yet,
the same memory space as used for the former is still
allocated to the latter even though there is little or no map
information underlying that particular cell.

Another problem is that a given street or other map feature
may cut across the boundary or boundaries of two or more
mutually adjacent cells. A consequence of this is that one or
more of threc disadvantageous compromises must be made
to properly store such a feature. Either the feature must be
split at the cell boundary or boundaries, which may not
occur at natural features like a street intersection, thereby
having to store the same feature in two or more blocks of
data, or the feature must be referenced or indexed in the
digital map data base more than once, i.e., once for each ceil
it crosses, thereby requiring more memory space for the
index and greater access time to the feature since the index
and separate blocks of data must be accessed once for each
such cell. Alternatively, the index can allocate the feature to
only one of the cells and not the others that are crossed, but
this reduces the accuracy of the index.

Another approach to creating and storing the digital data
base is known as the “quad tree” technique. In this approach,
the map, for example, is overlayed with an electronic grid
that divides the map initially into quarter sections or cells.
Then, each initial quarter cell that overlays a detailed street
network is itself further divided into quarter cells, and so on.
An initial quarter cell that does not overlay much street
detail and, therefore, has relatively little geographic
information, is not further divided. In other words, the size
of the grid cell is adapted or altered depending on the
amount of data it overlays. After the digitizing and storing,
the result is that less memory storage space is utilized for
those quarter cells that overlay sections of the map having
little detail and more storage space is available for the
scanned areas having more detail.

While the quad tree technique has the advantage of a more
efficient utilization of memory space than the technique
described above using a grid overlay of equal-sized cells, it
stilt suffers from the above-described problem relating to a
given feature crossing two or more mutually adjacent cell
boundaries. Analogous methods use hexagonal and triangu-
lar grid cells, but these essentially are not different from the
quad tree grid overlay.

Moreover, and as will be described more fully below, the
grid cells of any of the above techniques are not “closed
topological cells”, as this term is known in the art of
cartography. In other words, the resulting digital data base
does not have topological information about the underlying
geometric structure. This lack of information has certain
disadvantages including, for example, the inability to
retrieve the network of streets for what is known as “mini-
mum path finding”.

Another approach to creating and storing the data base is
known as DIME (an acronym for Dual Incidence Matrix
Encoding). In this approach, an example of which is
described and illustrated more fully below, the map, for
example, is represented topologically using topological
“open” “n-cells”. Each DIME computer record corresponds

5,694,534

3

to a single line segment in the map and information is
recorded about the endpoints of the line segment and the
areas to the left and right of that line segment. One disad-
vantage is that DIME data bases typically are organized by
street names, which is inefficient because this requires
considerable memory space.

Furthermore, while DIME has the advantage of storing
topological information, its data base organization is inef-
ficient for retrieval purposes. Each line segment retrieved by
the computer from the DIME data base may require an /O
(input/output) operation, which is relatively time consum-
ing. In other words, a DIME data base is not organized in a
manner that enables it to be relatively quickly accessed so as
to, for example, effectively display a moving map. Thus, in
the example of a moving map display in a vehicle, one VO
operation per street segment would be far too slow, because
the vehicle could be driven faster than the map data could be
retrieved to display the comresponding street segment,
thereby making the map useless for navigation.

Another problem indicated above with the prior tech-
niques is that a separate digital index must be stored and
accessed in memory to enable the computer to access a
desired portion of the digital data base. For example, in
using a DIME data base, in which the data of the line
segments are stored as coardinates of the line segment
endpoints, additional indices are required to be stored to
access the portion of the data base that represents street
segments within, for example, a given range such as a
rectangular window. This has the disadvantage of utilizing
additional storage space in the memory to store the index.

SUMMARY OF THE INVENTION

In one aspect the present invention constitutes apparatus
storing a representation of a topological structure having
topological features, including a data storage medium, and a
digital data base stored on the data storage medium, the
digital data base including a plurality of carrier blocks of
data representing the topological features at a given level of
detail, the data of each one of the carrier blocks being a
representation of a carrier which is the smallest topological
closed set including in the interior thereof a given topologi-
cal object.

In another aspect, the invention constitutes a method of
building a digital data base, representing a given topological
having topological features, using a programmed computer,
the digital data base including a plurality of carrier blocks of
data representing the topological features at a given level of
detail, the data of each one of the camier blocks being a
representation of a carrier which is the smallest topological
closed set including in the interior thereof a given topologi-
cal object, comprising the steps of:

a) providing on a data storage medium a stored digital
data base representing a topological structure having a
partition P of topological open sets;

b) accessing the topological open sets of the partition P;

¢) generating from the accessed topological open sets the
plurality of carrier blocks; and

d) storing the plurality of carrier blocks on a data storage
medium.

In yet another aspect, the invention constitutes a method
of building a more generalized or less detailed topological
complex X' from a plurality of carrier blocks of data
representing a more detailed topological complex X, using
a programmed computer, wherein the data of each of the
carrier blocks represents a topological closed set of n-cells,
and wherein said plurality of carrier blocks include data

10

15

25

30

35

45

50

65

4

representing mutually-adjacent boundaries as n-cells and
interiors thereof as n-cells, comprising the steps of:

a) providing said plurality of carrier blocks of data as a
digital data base on a data storage medium;

b) accessing said plurality of carrier blocks on said digital
data base:

c) generating from said accessed plurality of carrier
blocks at least one other carrier block of data corre-
sponding to said complex X', said other carrier block of
data representing a topological closed set which is
topologically equivalent to said data of said plurality of
carrier blocks, and wherein said n-cells of said common
boundary and said n-cells of said interior are absorbed
in said other carrier block; and

d) storing said other carrier block on a data storage
medinm.

In order to create additional levels in the hierarchy,
another computer program described below is executed and
iterates the above-described program to create a a still less
detailed complex X" from the complex X', and so on.
Embodiments of these two program are given below and
called, respectively, NEXT LEVEL and HIERARCHY.

In still another aspect, the invention relates to three
different methods for searching the digital data base having
a hierarchy of carrier blocks of data, the carrier blocks at
each level in the hierarchy constituting topological com-~
plexes X, X', X" . . ., each of the complexes containing
successively more generalized information and the complex
containing the most generalized information being the root,
and each of the complexes having n-cells, where n=0, 1, 2
. . . The three different search algorithms are called,
respectively, TOP-DOWN, ACROSS and BOTTOM-UP.
For example, in a structure where n=2, TOP-DOWN com-
prises the steps of:

a) initializing a first list of selected cells and a second list

of current carrier blocks;

b) setting the second list of current carrier blocks to be the
root;

c) setting the current hierarchical level to be the root;

d) selecting from the second list of carrier blocks, the
0-cells, 1-cells, and 2-cells that fall within a specified
range from a point;

e) exiting if the current hierarchical level is the most
detailed level;

f) replacing the second list of current carrier blocks with
another list containing one carrier block for each 2-cell
at the current level in the first list of selected cells, the
one carrier block of said other list being at the next
level of the hierarchy;

g) incrementing the current level; and

h) returning to step d).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of a geometric structure, par-
ticularly a map, used to explain combinatorial topology.

FIG. 2A illustrates pictorially the technique of fusion that
may be used on topological 1 -cells in accordance with the
present invention.

FIG. 2B shows pictorially the technique of fusion that
may be used on topological 2-cells in accordance with the
present invention.

FIGS. 2C and 2D are used to illustrate the principles of
“topological equivalence” and “topological difference”
respectively.

5,694,534

5

FIG. 3 illustrates pictorially digital map structure carrier
topology used to explain partitioning by carriers and a
hierarchy of carriers in accordance with the principles of the
present invention.

FIGS. 3A and 3B show carrier blocks and the data
contained in carrier blocks, respectively.

FIGS. 3C-1 and 3C-2 illustrate pictorially a given arbi-
trary geometric structure and a carrier for the geometric
structure, respectively.

FIGS. 4A-1 and 4A-2 are pictorial illustrations of an
example of a DIME digital data base of a topological
complex X used to explain the flow charts of FIGS. 4B and
4C.
FIGS. 4B and 4C are flow charts of embodiments of a
computer program used for building carrier blocks.

FIGS. SA and 5B are flow charts of embodiments of a
computer program for creating a next level of carrier blocks.

FIG. 5C is an illustration of a topological sub-complex X,
used to explain the flow charts of FIGS. 5A and 5B.

FIG. 6A is a flow chart of one embodiment of a computer
program for creating a hierarchy of greater than two levels
of carrier blocks.

FIG. 7A is a flow chart of one embodiment of a computer
program used to perform a “top-down” search of carrier
blocks.

FIG. 7B is an illustration similar to FIG. 3 and used to
explain the flow chart of FIG. 7A.

FIG. 8A is a flow chart of onec embodiment of a computer
program used to perform an “across” search of carrier
blocks.

FIG. 8B is a pictorial illustration of a moving map display
used to explain the computer program of FIG. 8A.

FIG. 9A is a flow chart of one embodiment of a computer
program for performing a “bottom-up” search of carrier
blocks.

FIG. 10 shows pictoriaily carriers in order to explain
another data encoding feature of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention applics generally to topological
representations, including geometric representations, of any
kind, including maps, mechanical drawings, and integrated
circuit masks or layouts. The invention will be described in
particular to maps and digital map data bases. Also, while
the invention will be described and claimed in relation to
“digital” data bases, it also applies to data bases that are
“analog” and to analog computers which process analog data
bases.

L Overview of Known Mathematical Combinatorial Topol-
ogy

In order to understand the present invention, and to
provide nomenclature, an overview of certain mathematical
theory, known as combinatarial topology, will be given.
Reference will be made to 2-dimensional geometric
structures, such as maps, but, the principles apply to
3-dimensional and higher-dimensional geometric structures
as well. Reference also will be made to FIG. 1 which
illustrates a map M of three states, New Mexico, Oklahoma
and Texas, and to FIGS. 2A and 2B which illustrate the
topological principles of fusion.

The fundamental objects for 2-dimensional geometric
structures in combinatorial topology are O-cells, 1-cells, and
2-cells. In general, an n-cell is a connected, n-dimensional

10

15

25

35

40

45

50

55

65

6

geometric object. Thus, as shown in FIG. 1, a O-cell is a
point, a 1-cell is an open line segment of any shape not
intersecting itself or any other n-cell, and a 2-cell is an
“open” disc stretched and formed to any shape not inter-
secting itself or any other n-cell. The term “open” has a
certain topological meaning. That is, a 2-cell is open if its
boundary of O-cells and 1-cells is not included and would be
closed if its boundary were included. For purposes of
describing the present invention, the 2-cell is considered to
be an open cell, although in mathematical literature the
usage may vary. Accordingly, for example, as shown in FIG.
1, the map M shows four O-cells labeled 1—4, respectively,
five 1-cells labeled a—f, respectively, and three 2-cells (open
discs) referenced NM (New Mexico), OK (Oklahoma) and
TX (Texas).

A given n-cell will be denoted by c”,, where the super-
script n gives the cell dimension and the subscript i selects
from a set of cells {c";}.

Furthermore, a 2-dimensional complex X or “2-complex”
is a collection of 0-, 1-, and 2-cells formed according to the
following set of three recursive rules:

1) A O-dimensional complex or *“0-complex” is a collec-

tion of O-cells.

2) A 1-dimensional complex or “I-complex” includes a
0-complex (also known as the O-skeleton), together
with a set of 1-cells satisfying the conditions that (a)
each 1-cell is bounded in the 0-complex, and each
0-cell of the complex is on the boundary of some 1-cell
of the 1-complex. Thus, for example, the 1-cell labeled
d in FIG. 1 is bounded by the O-complex of 0-cells
labeled 2 and 4 and each such 0-cell is on the boundary
of this 1-cell.

3) A 2-complex includes a 1-complex (also known as a
1-skeleton), together with a collection of 2-cells satis-
fying the conditions that (a) each 2-cell is bounded in
the 1-complex and each 1-cell of the complex is on the
boundary of some 2-cell of the 2-complex. Thus, for
example, the 2-cell labeled OK (Oklahoma) is bounded
in the 1-cells labeled b, d and £, and each such 1-cell is
on the boundary of the 2-cell labeled OK.

Thus, the 2-complex is similar to a jigsaw puzzle whose
pieces are the above-desaribed fundamental topological
objects, ie., n-cells, where n is the dimension. Similar
definitions can be made for complexes of any dimension,
such as a 3-dimensional complex which would have 0-, 1-,
2-, and 3-cells. A practical example of a 2-complex is a
DIME data base representing, for example, a street map of
a city, as will be described below in relation to FIGS. 4A-1
and 4A-2.

A 2-dimensional complex may be embedded in a
3-dimensional space. For example, a map sheet is a
2-dimensional and a complex representing it is
2-dimensional, but each point may have X, y and z coordi-
nates as for an elevation map. The dimensionality of the map
does not limit the number of coordinates.

A “sub-complex” is a subset of the 0-, 1-, and 2-cells that
satisfies the conditions for a complex. Thus, the 1-skeleton
of a 2-complex is an example of a sub-complex. Also, the
closure of a set of 2-cells, which is a set of 2-cells, the 1-cells
bounding any of the 2-cells, and the 0-cells bounding any of
those 1-cells, is a sub-complex. For example, with reference
to FIG. 1, a closed set would include the 2-cell TX, the
1-cells c, e, f and the O-cells 1, 3, 4.

A “carrier” also is a mathematical term used in topology,
and this will be defined and explained in more detail below
in relation to FIGS. 3C-1 and 3C-2.

A linear combination of n-cells of the same dimension is
called a “chain” and is denoted by:

5,694,534

K"=Ec";

FIGS. 2A and 2B illustrate the topological principle of
fusion. As illustrated in FIG. 2A, a pair of 1-cells, ¢, and c';,
may be “fused” to form a single 1-cell ', if the pair of cells
share a common 0-cell, i.e., if they are adjacent. FIG. 2A
shows the common 0-cell c°,. Likewise, as shown in FIG.
2B, a pair of adjacent 2-cells ¢*; and ¢>, may be fused to form
a chain or single 2-cell ¢, Fusion, which will also be
described in more detail in relation to FIG. 3, preserves the
topological characteristics of the complex, so that the com-
plex after fusion is “topologically equivalent” to the com-
plex prior to fusion.

Reference will now be made to FIGS. 2C nd 2D to explain
more fully complexes which are “topologically equivalent™
or “topologically different”. A topological transformation is
a continuous deformation, intuitively a rubber sheet
transfarmation, where neither rips nor folds are permitted. A
precise definition of topological equivalence in terms of
mappings and continuity can be found in any text on
topology, but the intuitive idea will suffice here. The three
items in FIG. 2C are topologically equivalent but the two
items a, b in FIG. 2D are not, because a cut must be made
in the interior of item a to deform it into item b. Conversely,
the points on the boundary of the hold in item b must
coalesce into a single item point (a singularity) to transform
item b into item a. This would aiso violate the requirements
for topological equivalence.

Furthermore, chains of adjacent 1-cells can be fused into
a single 1-cell, and chains of adjacent 2-cells can be fused
to create a single larger 2-cell, both by iterating pairwise
fusion of the adjacent n-cells as given above. Thus, for
example, while not shown, the chain c”'; shown in FIG. 2A
and the chain c¢'?, shown in FIG. 2B can be fused,
respectively, with similar adjacent chains to create a still
single larger 1-cell or 2-cell, respectively.

In summary, the fusion operation converts a given com-
plex X into another topologically equivalent complex X':

Fuse: XX

As will be described more fully below in relation to FIG.
3, while the original unfused n-cells and the fused chain of
n-cells are topologically equivalent, they are not the same
thing, although they both represent the same region or area
of the geometric structure, i.e., the map M in the example.
The unfused n-cells, such as the unfused 2-cells shown in
FIG. 2B, represent the geometric region in finer detail than
the fused n-cell, i.c., the 2-cell ¢'?; shown in FIG. 2B, which
represents the geometric region as a single atomic entity.
1L Partitioning By Carriers In Accordance With the Present

Invention; Index; Hierarchy of Carrier Blocks; Summary
A. Carriers

Reference now will be made to FIG. 3 to explain the
principles of the present invention. These include, among
other principles, partitioning a representation of a topologi-
cal structure, e.g. a geometric structure such as the map M,
by “carriers” as described below, as opposed, for example,
to partitioning the map M by using a grid overlay or by
partitioning the map M using street names and topological
open n-cells as DIME does. That is, the present invention
organizes data into a data base by “carriers”.

FIG. 3 shows a digital map structure carrier topology of
the present invention at, for example, three hierarchical
levels 1-3. While only three such levels 1-3 are shown and

10

15

25

30

45

S5

65

8

will be described, the principles of the present invention
apply to any number of levels. As will be further described
as one example, at level 3 there is a complex X which may
have some of its n-cells fused to create a complex X' of level
2 which, in turn, may have some of its n-cells fused to create
a complex X" of level 1.

Accordingly, consider a partition P (at a given level) of the
set of 2-cells ¢

P={A,, A,, . . . A}, where A, is an element of the partition P, and
A={cd}, such that the 2-cells ¢ are mutually adjacent.

Thus, for example, at level 3 shown in FIG. 3, the
partition P includes elements A,—A,, each having a set of
mutually adjacent 2-cells ¢?,. At level 2, the partition P
includes two elements A', and A',.

For each of the elements A; of the partition P at a given
level 1-3, in accordance with the present invention a sub-
complex X, is constructed having the 2-cells ¢’ in A,, all
1-cells c'; incident to those 2-cells ¢%, and all O-cells c%
incident to the 1-cells ¢!, The sub-complex X; thus repre-
sents a carrier which is a topological closed set and the
collection {X;: A; in P} at a given respective level 1-3
covers the entire complex X.

Furthermore, the interior of sub-complex X, is disjoint
from the interior of sub-complex X; for j not equal to i, the
advantages of which are related, for example, to map editing
described below. However, although such interiors are
disjoint, mutually adjacent sub-complexes X; and X, have a
chain of 1-cells K*, on their common boundary. That is, the
same chain of 1-cells K', occurs in both sub-complexes X,
and X;,. For example, the sub-complex X, corresponding to
element A, and the sub-complex X, corresponding to ele-
ment A, of level 1 have a common chain K', at their
common baorder, as shown in FIG. 3.

Each such sub-complex X,, in accordance with the present
invention, is said to “carry” a subset of the 0-, 1-, and 2-cells
in its interior and accordingly is called herein the “carrier”
for such a subset. The digital representation of each carrier
is called herein a “carrier block”, because it is stored as a
single block of data in memory. For example, FIG. 3A shows
a data storage memory SM having groups of carrier blocks
CB corresponding to a given level 1-3. Each carrier block
CB has a block of digital data representing the correspond-
ing sub-complex X, at the given level.

Thus, as shown in FIG. 3B, the stored data of a given
carrier block CB are O-cells (as XY coordinate data), and
l1-cells and 2-cells (shape information such as DIME
encodes 1-cells and 2-cells). In addition, and as will be
further described regarding the INDEX feature of the
present invention, the given carrier block CB may store a
pointer to a carrier block CB of another hierarchical level, so
that, for example, the carrier block CB for sub-complex X,
of level 3 of complex X will have a pointer to the sub-
complex X', of level 2 of complex X'. Also as shown in FIG.
3B, the given carrier block CB may include street names and
other information that street names and such other informa-
tion in addition to streets of the map M may be, for example,
displayed.

As previously described, and as will be further described
below in Section IC (HIERARCHY) a chain of 2-cells c2j
may be constructed, and to avoid proliferation of notation,
the chain is denoted by A, as well:

A,=Zc2,.

5,694,534

9

Because the 2-cells czj of an clement A, are mutually
adjacent, this chain can be fused together to form a single
2-cell ¢%. Thus, for example, and as will be further
described below, the chain of 2-cells czj of each respective
element A,-A,,, is fused into a respective single 2-cell of the
complex X' of level 2, as shown.

Thus, regarding the partition P at a given level as a set of
elements A; or chains of 2-cells, and as will be further
described below, n-cells of the complex X can be fused to
create the topologically equivalent complex X, as follows:

For each element A, in the partition P:

1) A,—c'?; that is the chain of 2-cells is fused into one
2-cell, such as {c*} at level 3 being fused into ¢, at
level 2 as pictorially shown in FIG. 3.

2) The boundary of sub-complex X,— a set of chains of
1-cells {K',}, where each of the chains is a chain of
adjacent 1-cells along the common boundary of a pair
of adjacent sub-complexes X, or along the boundary of
the entire complex X.

3) K'—c"i. where each of the ¢, is a single 1-cell
corresponding to a chain of 1-cells K*,. For example
FIG. 3 shows a chain of 1-cells K*, labeled ¢',, ¢*,, ¢!,
on the boundar{ of element A, which is fused into the
single 1-cell c”; of element A'; of the complex X.

4) ¢®,—c®,,, where c°,, is a O-cell on the boundary of at
least one of the chains K*,, as shown in FIG. 3.

The complex X' comprises the resulting cells ¢2,, ¢, c®,,
and necessarily has fewer n-cells than the complex X
(provided the partition P is not the maximal partition P in
which element A, contains exactly one 2-cell for every i). By
means of this mapping, a simpler cellular decomposition of
the 2-dimensional space may be constructed and stored on
storage memory SM; viewed in reverse, the original com-
plex X is a more detailed complex of the complex X'. By
choosing the partition P to be significant, e.g., along major
roadways for a map, complex X represents the geometric
space at that level of significance.

By replacing 2-cells with 3-cells and extending the fusion
of 1- chains to 2-chains, the principle of camriers of the
present invention applies to 3-dimensional structures.

In general, and with reference to FIGS. 3C-1 and 3C-2, a
carrier of a given set or topological object may be defined as
the topological closed set, e.g., the smallest topological
closed set, containing the given set or topological object in
its interior. This means that none of the given set may have
any part on the boundary of the carrier; rather, all of the
given set must be contained within the carrier. More
specifically, FIG. 3C-1 shows an arbitrary geometric struc-
ture as such a given set, which structure has O-cells, 1-cells
and 2-cells. FIG. 3C-2 shows the carrier for that given set,
which carrier is the smallest topological closed set contain-
ing the given set and corresponds to a given sub-complex X,
stored as a carrier block CB.

Thus, the carrier contains all n-cells that could be affected
by any continuous process on the given set. For example,
and as will be further described below, one use of carriers is
to gather or organize together all data that represents geo-
graphic areas to which a continuously moving vehicle could
travel from a given known position, as described in the
above-mentioned co-pending applications. As the vehicle
moves, carrier blocks stored in memory are accessed to
display the given sets as a moving map.

As was indicated in Section I above, carriers are also
mathematical tools used by mathematicians for different
purposes, €.g., to analyze continuous functions.

B. Index

As will be further described, the correspondence of n-cells

and chains in the mapping or fusing relates the more

10

20

25

30

35

45

55

65

10

significant features to collections of less significant features,
which constitutes the search index of the present invention
used for searching the digital data base of carrier blocks CB.
In other words, and as was indicated above in relation to
FIG. 3B, for example, the element A", of the partition P of
level 1, which has freeways as the most significant feature,
is an index or pointer to the element A', of the partition P of
level 2, which has arterial roadways as a lesser significant
feature, which itself is an index or pointer to the elements
A,—A, of the partition P of level 3, which has local streets
as the least significant feature.

It should be noted that the quad tree approach to parti-
tioning a map M also has an hierarchical index, but the
several levels are not useful topological structures.

C. Hierarchy of Carrier Blocks

As illustrated pictorially in FIG. 3 and indicated in IIA
above, the carrier building process can be iterated to con-
struct still simpler cellular decompositions:

X=X
Xy X"

The result is an hierarchy of 2-complexes. An arbitrary
2-cell ¢ in the original complex (the most detailed such as
complex X in FIG. 3) is contained in a nested hierarchy of
2-cells, one from each complex in the hierarchy of com-
plexes. Likewise, each sub-complex X, is contained in a
nested hierarchy of sub-complexes and each of these repre-
sents a topological closed set. These facts are the basis for
the digital data base search algorithms disclosed below. This
hierarchy applies without alteration to higher dimensional
spaces.

D. Summary

In summary, FIG. 3 shows a roadmap at three scales or
levels, each having corresponding groups of carrier blocks
CB, (level 3) large—showing all the local streets, (Ievel 2)
intermediate—showing only major streets, e.g., arterials,
and (level 1) small, showing only limited access highways,
e.g., freeways. The exact correspondence between the levels
is also indicated in the figure. The chain K*; of 1-cells (¢!,
'y, ¢, at level 3 corresponds to the single 1-cell ¢'*, at
level 2. Thus, level 2 contains less information than level 3,
because a chain of 1-cells is fused to a single 1-cell at level
2, and 1-cells interior to the sub-complexes X, are effectively
absorbed into the 2-cell ¢'%; of level 2. (A further reduction
in information can be made by filtering the detailed shape of
the chain of 1-cells to produce a more generalized repre-
sentation. This reduces the amount of data that are stored in
the carrier block to represent the chain.)

Also, just as chains of 1-cells are fused into single 1-cells
and their geometric representation may be further general-
ized in the mapping through filtering, chains of 2-cells are
fused into single 2-cells and their geometric description (for
example elevation contours) may be filtered to a still more
generalized representation.

Single O-cells map into single O-cells or are absorbed
within chains of 1-cells that map to single 1-cells going to
the next level of generalization. The 0-cells bounding the
chains of 1-cells map to 0-cells and the 0-cells interior to the
chain are dropped in the mapping. Similarly, 1-chains on the
boundary of the sub-complexes X, map into 1-cells in X,
but 1-cells interior of the carriers are absorbed in the fusion
of 2-cells. In this way, the number of n-cells diminishes in
the mapping.

Thus, the mapping from one level to the next reduces
information and consequently the next level covers a larger

5,694,534

11
geographical region (in the case of maps) with substantially
the same amount of data in the respective carrier blocks CB.
In FIG. 3, all of the illustrated elements A,~A, of level 3
map into a single element A", of the level 2 representation.
Likewise, both of the elements A', and A', of level 2 map
into the single element A, of level 1.
IIL Building Carrier Blocks and Their Hierarchy
A. Introduction

In Section II, carriers, carrier blocks CB and their hier-
archy were described. Ultimately, and as will be further
described below, a data storage medium SM (see FIG. 3A)
will store the carrier blocks CB, which may then be pro-
cessed by a computer so as, for example, to display the
geometric structure, €.g., the map M, at any level (such as
levels 1-3 of FIG. 3) or update the representation, such as
when new roadways are added, at any level. In this Section
III, one embodiment of the manner in which the digital data
base of carrier blocks CB, and their hierarchy, may be built
will be described.

B. Building Carrier Blocks: In General: By Accretion
1. General

In general, the carrier blocks CB corresponding to the
most detailed level, e.g., level 3 shown in FIG. 3, is
constructed from a complex X of topological open sets of
2-cells. For example, and as previously described, the com-
mercially available DIME map data base of a given geo-
metrical area, which may be purchased from the U.S. Census
Bureau, can be used as the complex X of input data for the
method described below. This DIME map data base is
pictorially illustrated in FIGS. 4A—l and 4A-2 as having the
set of topological open 2-cells c? "; stored in a computer data
bank DB. FIG. 4A-2 indicates the DIME data base as being
stored or arganized by street names (see leftmost column).
Also stored in the data bank DB as part of the DIME map
data base are the O-cells and 1-cells associated w1th ie.,
incident to, each one of the topological open cells c . The
DIME data base can be stored on, for example, a relatwely
large computer such as the VAX 11/750 manufactured by
Digital Equipment Corporation, Maynard, Mass.

Accordingly, and with reference to the software flow chart
of FIG. 4B, the method broadly includes using a pro-
grammed computer in the following manner:

1) Providing on a data storage medium of a computer a
stored digital data base representing a topological struc-
ture having a partition P of topological open sets of
n-cells (such as the above-mentioned DIME data base)
{block 4B-1).

2) Accessing the topological open sets of the partition P
on the data storage medium (block 4B-2).

3) Generating from the accessed topological open sets the
plurality of carrier blocks CB at a given hierarchical
level (block 4B-3).

4) Storing the generated carrier blocks CB as a digital data
base on a storage medium (block 4B-4).

2. By Accretion

In this specific procedure, the partition P at the most
detailed level, e.g., level 3 shown in FIG. 3, is constructed
element-by-clement A; and at the same time the sub-
complexes X are constructed. Each of the elements A, of the
partition P at such level is built by accretion, until given
thresholds are reached, according to the following software
algorithm which will be described in relation to FIG. 4A-1
and the flow chart of FIG. 4C:

In referring to FIG. 4A-1 again, it is assumed that the
complex X of the given partition P has been generated and
stored. In the current example, the compiex X is the DIME
data base described in IIIB1 above. Accordingly, the carrier
blocks CB at a given level 1-3 are built and stored, as
follows:

10

15

20

25

30

35

45

50

55

65

12

1) Initialize or set a counter k=0 (block 4C-1) (the counter
k represents the subscript i in the element A, of partition
P).

2) Select an arbitrary 2-cell in the complex X of data bank
DB (block 4C-2) not a.lready included in some prior
element A, in P; call it c (see FIG. 4A-1). This
selection can be accomphshed by setting a pointer to
the representation (not shown) in the data bank DB of
cell &2,

3) Increment counter k and initialize a register A; and a
register X, (Block 4C-3).

4) Construct the sub-complex X, by adjoining all 1- and
0O-cells incident to ¢? “» that is, make the sub-complex X,
a closed set (block 4C-4) and store in register X,.

5) Test whether there is another 2-cell czj, (see FIG. 4A-1)
in the complex X of data bank DB not already included
in some prior element A,, and adjacent to a 2-cell in the
sub-complex X, and satisfying any other desired
constraint, (such as on the same side of a distinguished
1-cell which may be, for example, a major map feature)
as other 2-cells in register X, (block 4C-5). If there is
no other, go to step 9; if there is go to step 6.

6) Test whether adding the 2-cell c?, in step 5 and its
incident 1-cells and O-cells to register X, would cause
the sub-complex X, to exceed a given threshold of
complexity (for example, if the corresponding carrier
block CB would exceed a given size in bytes of
computer memory) (Block 4C-6). If it would so exceed,
go to step 9; if not, proceed to step 7.

7) Add c ,to A, and adjoin all incident 1- and O-cells to
X, so as to keep the sub-complex X, closed (Block
4C-7).

8) Go to step 5 above (block 4C-8). Note that this would
result in selecting yet another 2-cell such as 2-cell ¢* '
(shown in FIG. 4A-1 as the cell for step 5 - second
pass), possibly resulting in yet another 2-cell and
incident 0- and 1-cells being added to the sub-complex
X, to keep it closed. (The loop is continued until the
storage threshold of step 6 is exceeded.)

9) A, and X, are compiete; thus add the contents of A, to
P and store the contents of X, (Block 4C-9).

10) If there remain any 2-cells not in some A,, go to step
2; if no 2-cells then exit (Block 4C-10).

The partition P is now complete and each sub-complex X,
corresponding to element A; in P has been constructed and
stored as carrier blocks CB corresponding to the given level.

By replacing 2-cells with 3-cells and incorporating 2-cells
into the steps for 1-cells, the above accretion method applies
to 3-dimensional structures. Similarly, it may be extended to
any number of dimensions.

Furthermore, for some applications other information can
be attached to the 0-, 1- and 2-cells of the complex X and this
information is included in the carrier blocks CB and used to
compute the storage size of each carrier block CB. Examples
of such information, as described in relation to FIG. 3B, may
be street names, addresses, etc. appropriate for the display of
a map.

The computer programs in source code listings entitled
BUILDLEAF, AMOEBA, and SMTOCARR attached to this
specification and described more fully below, implement the
above general and more specific algorithms. Particularly,
SMTOCARR corresponds to steps 4 and 7, AMOEBA
corresponds to steps 5 and 6, and BUILDLEAF corresponds
to steps 1-3, and 8-10 of the accretion method.

5,694,534

13

C. Building the Carrier Block Hierarchy: General: NEXT

LEVEL: HIERARCHY: SUMMARY
1. General

As indicated, the software program described in Section
IIIB results in a plurality of carrier blocks CB at a given
level, e.g., the level 3 shown in FIG. 3. In this Section IIC,
two software algorithms called herein NEXT LEVEL and
HIERARCHY, respectively, are described. NEXT LEVEL
builds the level i-1 carrier blocks CB from level i carrier
blocks CB, for example the level 2 from the level 3 as
pictorially shown in FIG. 3, while HIEFRARCHY essentially
iterates NEXT LEVEL to build additional more general
levels of carmrier blocks CB such as shown for example in
level 1 of FIG. 3.
2. NEXT LEVEL

a. General

Reference will be made to the flow chart of FIG. 5A to
describe generally the algorithm for producing a more
generalized “next level” data base from the more detailed,
preceding level in the hierarchy. The input data to this
method are the plurality of carrier blocks CB representing a
given level i or topological complex such as complex X from
which the more generalized topological complex X is
produced. Thus, the method includes, using a programmed
computer, as follows:

1) Providing the plurality of carrier blocks of data as a
digital data base on a data storage medium (block
SA-1).

2) Accessing the plurality of carrier blocks on the digital
data base (block 5A-2).

3) Generating from the accessed plurality of carrier blocks
at Jeast one other carrier block of data corresponding to
the complex X', the other carrier block representing a
topological closed set which is topologically equivalent
to the data of the plurality of carrier blocks, and
wherein the n-cells of the common boundary and the
n-cells of the interiors are absorbed in the other carrier
block (block 5A-3).

4) Storing the other carrier block on a data storage

medium (block 5A-4).

With reference to FIG. 3 and FIG. 3A the above method
would apply, for example, to the more detailed carrier block
CB corresponding to the clement A of the complex X which
becomes a part of the more generalized carrier block CB
corresponding to element A'; of the complex X'. The 1-cells
on the common border of mutually-adjacent 2-cells, and
those 2-cells, of element A, of complex X become absorbed
in the element A'; of complex X'.

b. Specific

Reference will be made to FIG. 5B and FIG. 5C to
describe one embodiment of a more specific algorithm
carried out by NEXT LEVEL.

The set of sub-complexes X, corresponding to the ele-
ments A, of the partition P at level 3 and produced and stored
by the method described above in Section II is the input data
to the specific algorithm NEXT LEVEL, as already
indicated, to produce the next level of carrier blocks CB.
NEXT LEVEL produces a complex X that is topologically
equivalent to X but has fewer n-cells. The O-cells in X
correspond to some of the O-cells in X, 1-cells to chains of
1-cells, and 2-cells to chains of 2-cells. In making reference
to FIGS. 5B and 5C to explain NEXT LEVEL, the latter
fllustrates pictorially a subcomplex X, corresponding to
element A, of FIG. 3. Thus, the method is as follows:

1) For each sub-complex X, fuse (see further description

below) all the contained 2-cells to form a single 2-cell

10

15

30

35

40

45

50

55

65

14
c'?, (block 5B-1). This is possible because the sub-
complex X; was constructed so that the contained
2-cells ¢?; were mutually adjacent.

2) Identify the 1-dimensional sub-complex comprising
the 1-cells on the boundaries of 2-cell ¢?; and the O-cells
bounding those 1-cells (Block 5B-2) (see FIG. 5C-2).
This is a sub-complex of the 1-skeleton of complex X.
Note that an essential 0-cell is that O-cell incident to t
1-cells, where t is not equal to 2.

3) Construct connected chains of 1-cells K', so that each
chain is bounded by essential O-cells (block 5B-3).
These are the 1-chains common to adjacent sub-
complexes or on the boundary of the entire complex X.

4) Fuse each chain K*; to form a 1-cell ¢, (block 5B-4)
{see FIG. 5C-3). This is possible because each chain is
connected. If it is desired to also reduce the “metrical”
complexity (not just the topological complexity), the
1-cell ¢ ; may be generalized using a straightening
algorithm such as the known Douglas-Peuker algo-
rithm.
5) For each essential O-cell ¢, create a chain K°,
comprising the single O-cells and map this chain into
0-cell c¢®,,, which is just a copy of K°, (block 5B-5).
The result of executing NEXT LEVEL is that the complex
X' comprising the c,,, ¢'';, and c'?; cells, together with the
mapping associating the cells ¢ with chains K", is the next
level in the hierarchy. This method extends also to higher
dimensions.
3. HIERARCHY

The following algorithm, called HIERARCHY, merely
iterates NEXT LEVEL until the reduced complex X' does
not exceed a given complexity threshold. An example of
such a threshold is a maximum number of bytes of computer
memory required to store a carrier block CB representing the
entire complex X'. With reference to FIG. 6A, the steps of
the algorithm are as follows:

1. Initialize the current complex (now called Y) to be the
given complex X (Block 6A-1).

2. Create and store the complex Y' using the NEXT
LEVEL algorithm above (Block 6A-2).

3. If complex Y exceeds the given complexity threshold,
set Y to be Y' and go to step 2.

The result of executing HIERARCHY is that the most
general level of carrier blocks CB in the HIERARCHY is
built and stared, which in the example of FIG. 3 is level 1.
This most general level also is termed the “root”, which is
used in the search algorithms described below. This method
also applies to any number of dimensions.

Moreover, each level in the hierarchy is itself a useful
geometric structure, as well as an index to the next level.

The step of fusing a chain of n-cells is accomplished in
memory by, for example, simply creating a new cell and
copying information from the chain to the new cell. For
example, to fuse a chain of 1-cells, one allocates memory for
a new 1-cell, records the bounding O-cells of the new 1-cell
to be the two bounding O-cells for the chain, records the
cobounding 2-cells to be the 2-cells on the left and right of
the chain of 1-cells, and records the shape of the new 1-cell
to be the successive shapes of the chain of 1-cells. In
addition, it is often useful to store pointers from the new
1-cell to the 1-cells in the chain, as a means to retricve
detailed data or other associated data such as street names.

The computer programs in source code listings entitled
BUILDANC, ANCESTORS, and PARAMOEB implement
the above algorithms, as further described below.

5,694,534

15

4. Summary

In summary, and referring again to FIG. 3 as an example,
the above procedures produced the sub-complexes X; of
level 3 and the 0-, 1-, and 2-cells of level 2, but not the
partition of level 2. The same procedure is used on the level
2 complex X to produce the 0-, 1-, and 2-cells of level 1. In
FIG. 3, the process ends here. In general, the process is
iterated producing a new more generalized level until a
single sub-complex that is equal to the whole complex is
created. This will occur in the example programs when the
data have been reduced enough.

IV. The Search Algorithms
A. Introduction

As previously indicated, a primary purpose in building the
carrier blocks CB and their hierarchy is to provide easy and
quick access to the relevant geometric information, for
example, for display purposes. The search algorithms
described below accomplish these purposes.

There are three different search algorithms used with the
carrier blocks CB, called, respectively, TOP-DOWN,
ACROSS and BOTTOM-UP. All three algorithms find every
piece of map at the appropriate scale or level for a given
rectangular arca for display on a display screen, as disclosed
in the above-mentioned co-pending applications of the
assignee of the present invention. With no essential changes,
these algorithms can be made to search for areas of any
shape, not just rectangular.

The TOP-DOWN search starts at the most generalized
level, i.e., level 1 in FIG. 3, and proceeds down the index
(described more fully below) to succeeding lower levels. An
ACROSS search starts with a given coverage at a particular
level of generalization, e.g., level 3 in FIG. 3, and retrieves
sub-complexes X; of the digital map data base at the same
level. A BOTTOM-UP search is the simplest and proceeds
from a detailed level, such as level 3 in FIG. 3, to a more
generalized level.

B. TOP-DOWN Search

With reference to FIG. 7A and FIG. 7B, to determine
which O-cells, 1-cells, and 2-cells at each level of the
hierarchy are within a given rectangie (also called a range)
surrounding a point (see FIG. 7B) on a display screen (not
shown), the search will begin at the root (by analogy of a
tree) and proceed along (by analogy) the branches to the
leaves. (The point p described and shown herein corre-
sponds to a symbol DRP, i.e., “dead reckoned position”, on
the display screen showing the position of the vehicle
relative to the position of the displayed map.) The result of
the search will be a list of n-cells falling within or inter-
secting the given range. The algorithm includes the follow-
ing steps:

1) Initialize two lists (Block 7A-1), a first list of selected
cells, which will contain the results, and a second list of
current carrier blocks, which is used within the algo-
rithm.

2) Set the second list of current carrier blocks to be the
root and set the current hierarchical level to that of the
root (level 1 in FIG. 7B) (Block 7A-2).

3) Select from the second list of current carrier blocks the
n-cells that fall within a specified range of the point p
(see FIG. 7B) (Block 7A-3). Note that this step may
employ well-known point-in-polygon and geometric
intersection routines. Note further that any geometric
range, not just rectangular, could be used by employing
different but also well-known geometric routines, and
that any dimension may be used.

4) If the current hierarchical level is the most detailed
level (level 3 in FIG. 7B), then exit (Block 7A-4). (The
output data of the algorithm is the first list of selected
cells.)

10

15

25

30

35

45

55

65

16

5) Replace the second list of current carrier blocks with
another list containing one carrier block for each 2-cell
at the current level in the first list of selected cells, the
one carrier block being the carrier block explicitly
associated with this 2-cell (Block 7A-5). (These carrier
blocks will all be at the next level (level 2 in FIG. 7B)
of the hierarchy.)

6) Decrement the current level (Block 7A-6).

7) Go to step 3 (Block 7A-7). (Note, in the example of
FIG. 7B the program now goes from level 2 to level 3.)

C. ACROSS Search

Reference will be made to the flow chart of FIG. 8A and
the pictorial views of FIG. 8B. The latter show the range or
rectangular area surrounding the position p of, for example,
a vehicle, which, as previously described may be a dead
reckoned position DRP. Also shown are a plurality of
carriers of a given hierarchical level and having portions
within the range. In other words, if it is assumed the
rectangular area represents a display screen in a vehicle, then
the driver would see on the display the geographical areas
corresponding to the portions of the carriers within the
range, i.e., carrier blocks CB will have been accessed and
retrieved by the on-board computer so as to display this
information. Also, as shown in FIG. 8B-2, the change in
position of the rectangular area represents the movement of
the vehicle to a new position p, thereby resulting in a
different map display.

Accordingly, this search is used to determine which
n-cells of carrier blocks CB at a given hierarchical level are
within a given range of the point p. In describing the method
below, assume that prior to step 1 below, the condition
illustrated in FIG. 8B-1 occurs, which shows certain carriers
and, hence, corresponding carrier blocks CB, one of which
is a given carrier block CB. Then, and with reference also to
the flow chart of FIG. 8A and FIG. 8B-2, the method
includes:

1) Initialize two lists (block 8A-1), a first list of selected
cells, which will contain the results, and a second list of
current carrier blocks CB, which is used within the
algorithm.

2) Set the second list of current carrier blocks CB to be the
given carrier biock CB.

3) Select from the second list of current carrier blocks CB
the n-cells that fall within a specified range of the point
p (block 8A-3). Note that this step may employ well-
known point-in-polygon and geometric intersection
routines. Note further that any geometric range, not just
rectangular, could be used by employing different but
also well-known geometric routines, and that any
dimension may be used.

4) If none of the n-cells selected in step 3 is on the
boundary of a carrier, then exit (block 8A-4). This exit
or output is represented in FIG. 8B-4.

5) For each n-cell in the first list of selected cells, if the
selected n-cell of step 3 is on the boundary of a carrier
and the adjacent carrier is not in the second list of
current carrier blocks, add that adjacent carrier to the
second list (block 8A-5). This is shown pictorially in
FIG. 8B-2 which shows new or adjacent carriers being
added.

6) Go to step 3 (block 8A-6). This is shown pictorially in
FIG. 8B-3 as pass 2 in which yet another carrier may
be found by iterating.

D. BOTTOM-UP Search

This search is used to determine which n-cells at each

hierarchical level from a given level and carrier block CB to

5,694,534

17

the root (e.g., level 1 in FIG. 3), fall within a given range of
the point p. Accordingly, and with reference to the flow chart
of FIG. 9A, the method includes:

1) Initialize two lists (block 9A-1), a first list of selected
cells, which will contain the results, and a second list of
current carrier blocks CB, which is used within the
algorithm.

2) Set the second list of current carrier blocks to be the
given carrier block CB (block 9A-2).

3) Select from the second list of current carrier blocks the
n-cells that fall within a specified range of the point p
(block 9A-3). Note that this step may employ well-
known point-in-polygon and geometric intersection
routines. Note further that any geometric range, not just
rectangular, could be used by employing different but
also well-known geometric routines, and that any
dimension may be used.

4) If the current level is the root, then exit (block 9A-4).
The output or exit of the method is the first list of
selected n-cells.

5) Replace the current carrier blocks CB in the second list
with the single carrier block CB at the next level.
V. One Example of the Practical Application of the Carrier

Blocks and Search Algorithms

As previously indicated, the two co-pending applications
of the assignee of the present invention disclose a comput-
erized vehicle navigation system and map display that
enable a driver to navigate over a given geographical area
and display a moving map on the display screen at different
hierarchical or “zoom” levels. The technique of the present
invention can be applied to create a digital map data base
using carrier topology, as described herein, and search the
digital map data base to display the moving map. While the
present application is believed to be complete in itself, the
above-identified two co-pending applications are hereby
incorporated by reference in their entirety.

More specifically, in accordance with the present
invention, the digital data base of carrier blocks CB and their
hierarchy can be built and stored using the relatively large
computer such as' the above-mentioned VAX. Then, this
digital data base of carrier blocks CB can be copied using
conventional techniques onto a portable data storage
medium such as a compact cassette, compact disc or tape.
The portable data storage medium can then be inserted in the
vehicle’s on-board computer, which also is programmed
with the above-mentioned three search algorithms of the
present invention. The search algorithms also can be stored
on the portable data storage medium and down-loaded into
the on-board computer memory when needed. Thereafter,
the digital map data base can be searched and accessed for
the display purposes, as will now be further described.

As an example, the TOP-DOWN algorithm can be used to
search the digital data base when the driver has inserted, for
example, a new cassctte storing a new digital map data base
than previously used and the vehicle is then first turned on.
At this time, the on-board computer stores the current
location of the vehicle, which, as described in the
co-pending patent applications, is called in those applica-
tions a dead reckoned position DRP and has been referenced
here as position p. This position p is then used as described
in the TOP-DOWN search to search for and access one
carrier block CB corresponding to the respective hierarchi-
cal Jevels, e.g., levels 1-3 shown in FIG. 3. As an example,
at each such level 1-3, the corresponding block CB is down
loaded into the on-board computer and then is available for
display, as desired by the driver. That is, as described in the

10

15

20

25

30

35

40

45

55

65

18

co-pending patent applications, the vehicle driver (or
passenger) can select a given “zoom” or “scale” level to
display the digital map data base at the selected level.
Accordingly, by such a selection, the map portion stored in
the carrier block CB corresponding to the selected level 1-3
in the present example will be displayed on the display.

Thereafter, when the vehicle is moving, the ACROSS
search is used to access carrier blocks CB at the selected
level 1-3 and collect the 0-, 1- and 2-cells which are in the
above-mentioned range of the position p. These collected
n-cells are then displayed as a moving map display as the
vehicle moves over streets and across neighborhoods.

The BOTTOM-UP search is used when the vehicle is first
started with the same cassette inserted in the on-board
computer, as opposed to a new cassette being inserted as
described above for the TOP-DOWN search. At this time,
the computer also stores information about the position p of
the vehicle. In a similar manner as described for the TOP-
DOWN search, carrier blocks CB corresponding to the
hierarchical levels 1-3 within the above-described range are
searched, accessed and down loaded into the computer,
thereby being available for display. The BOTTOM-UP
search is thus used to retrieve more generalized map dis-
plays with respect to the current known position, starting at
level 3 in the present example.

VI Summary of Advantages of the Present Invention

All topological information of the geometric structure is
stored and readily available. This means geometric neigh-
borhoods of any type, such as adjoining neighborhoods Of
streets for a map, can be easily retrieved and the consistency
of the representation can be enforced. In the case of maps,
for example, carrier blocks CB corresponding to the street
network can be retrieved, e.g., from the above-mentioned
VAX computer, and analyzed as a linear graph (for example
for minimum path finding), errors in the map source data can
be discovered and eliminated, and completeness of coverage
can be verified. Moreover, as stored on the cassettes inserted
in the on-board computer of the above-mentioned vehicle
navigation system and map display, entire carrier blocks CB
of data can be conveniently accessed as the vehicle moves
to display a moving map.

Each sub-complex X, corresponding to an element A, of
the partition P is a topological closed set whose interior is
isolated from all others. This enables the updating of each
carrier block CB to be accomplished without interference or
contradiction to other carrier blocks CB storing adjacent
sub-complexes X, That is, when stored in the VAX
computer, these carrier blocks CB can be individually
retrieved and displayed for updating purposes without
impacting on the information stored in other carrier blocks
CB.
The areal coverage of each sub-complex X; of a partition
P at a given level may vary, but the amount of detail and,
hence, byte size of a carrier block CB, remains substantially
constant, which is efficient for storage and retrieval. In a
map, for example, a given carrier block CB might cover a
few city streets in San Francisco, while another carrier block
CB at the same level might cover the whole state of
Wyoming, but both would have substantially the same
amount of detail.

Efficient utilization of memory space can be further
enhanced by employing the encoding techniques which will
now be described in relation to FIG. 10. This FIG. 10 shows
a given carrier corresponding to two levels such as level 3
and level 2. The n-cells on the boundary of the carriers are
stored in a carrier block CB for one or the other levels, but
not both. For example, for level 3, the corresponding carrier

5,694,534

19

block CB does not store the n-cells on the boundary of the
carrier, but only the interior n-cells. For level 2, the bound-
ary n-cells of the carrier are stored in the corresponding
carrier block CB. Thus, the boundary n-cells are stored only
once, thereby saving memory space. When the data in the
carrier block CB of level 3 is retrieved, the boundary n-cells
can be reftrieved from the carrier block CB of level 2.

Also, similar encoding can be accomplished for carrier
blocks CB at a given level representing adjacent features.
That is, the boundary n-cells may be stored in one or the
other such carrier blocks CB but not both.

The hierarchy of successively more generalized com-
plexes X, X', X" . . . stored as carrier blocks CB is itself a
search index permitting a very efficient search, where the
search key is geometrical such as XY coordinate ranges.
Also, the index itself is a smaller scale abstraction of the
more detailed structure. For example, the index for the
element A', of level 2 shown in FIG. 3 is the element A", -of
level 1. At the same time, the complex X" is a useful map
of, for example, freeways displayed, e.g., in a “zoomed-out”
display, and complex X is a useful map of major access
roads displayed in a “zoomed-in” display. Thus, no addi-
tional memory storage space is required for a separate map
index as in other systems.

While the present invention has been described using
carriers with respect to representations of a topological
structure and with respect to a geometric structure, such as
the above-mentioned DIME data base, it also may be used,
for example, with respect to point sets.

VIL. Computer Program Listings

Source code listings in “C” language for instructing a
computer to perform the above-described algorithms are
included as part of this specification in the form of copies of
computer printout sheets. These source code listings may be
used in connection with the VAX computer previously
described or in comnection with the above-mentioned
vehicle on-board computer which may use an INTEL8088
microprocessor chip manufactured by Intel Corporation,
Santa Clara, Calif., as is appropriate. The titles and general
content of these listings are as follows:

10

15

25

30

35

20

1. CARRIER.H;2—This provides definitions of data
structures and layouts for the programs.

2. STRUCT.H;2—This is a DIME representation of a
complex.

3. BUILDLEAF.C;1—This calls AMOEBA.C;1.

4. AMOEBA.C;1—This builds the sub-complexes X,
from the DIME file.

5. SMTOCARR.C;1—This format carrier blocks CB
from the sub-complexes X,.

6. BUILDANC.C;1—This starts the process for building
complexes X' . ..

7. ANCESTOR.C;1 (and Parent amoeba program)—This
has the loop for building next level carrier blocks CB
and interacting until build one carrier block CB.

8. FND_PRTS.C—This implements the Bottom-Up
search.

9. FND_KIDS.C—This implements the Top-Down
search.

10. FND__SIBS.C—This implements the Across search.

All right, title and interest in copyright to the computer
programs disclosed in this specification is owned by the
assignee of the present invention. Accordingly, the following
copyright notice is deemed to apply to each and every one
of these programs.

Copyright 1985 Etak, Inc.

The foregoing description of preferred embodiments of
the invention has been presented for purposes of illustration
and description. It is not inended to be exhanstive or to limit
the invention to the precise form described, and many
modifications and variations are possible in light of the
above teaching. The embodiments were chosen and
described in order to best explain the principles of the
invention and its practical application to thereby enable
others skilled in the art to best utilize the invention in various
embodiments and with various modification as are suited to
the particular use contemplated. It is intended that the scope
of the invention be defined by the claims appended hereto.

5,694,534
21 22

. 10£20/97 MON : 2 9
- 2ALD/8T MON 13:00 FAX 415 362 2028 __ FoMeL @ ooz
B R ate TR L L P LU
- _PURS:CMARV.PATENT] RIER.rs2 Sheet 1 of 3 y Page 48
/ovane VSV EPTEEOARERNISRASSNSISASASG IS CISSIIBORS
- Fal s/
/¢ Tha carrier hlock contains a DIME encoding of a L7
/s closad 2-cell. It alsp contains pointers to the s/
- /% parent carrter for boundary l1-cell chains. A single¢/
/e 1—cmll in the parent correspondgs to a chain in this s/
/¢ carrier. Each 2-cell) at this level paoints to a as
- /e carrier at tha next levgl containing the interior s
/% information. ./
(4] ./
- /= Alee coded are Nameg and landmarks. Landmarks have ¢/

/¢ 3 namm and coordinate location for annotation and LY)
/¢ are assoclated with one of the cells in the carrier.e/

L] fo [74
/¢ All the cy_hd... fields are nffsets: i.e. relative »/
/¢ byte counte from the beginning of the carrier. »s
- /e All the ..._next filalds are alpo offsets from the o7
7¢ beginning of the carrier and sp is the DIME code. ./
re a/f
- /¢ Tha ..._id fields are offsets from the beginning of s/
/s the carrier. This permits pointers directly to ./
/¢ records in the cerrier, Negative -.._id indicates 7/
-« /* s deletead record. ./
Ie M. White a/
/. L T4
[] Ill.....l..‘.-..l.‘l.“l“"t.""-.l‘.‘l...".'.“‘.‘-.‘,

Sdefine CARRSIZE 146384
wdefine CARRHEAD 52

[%dpfine RESOL_WASK BxIF /+ bit resolution mask for cy_general ./
Sdefinm THNIG_BIT S8 /¢ bit on for tuige in cy_general s/
Sdefine LEAF _BIT Pu4d /* bit on for lesaves In cy_general ./
[_J Etruct carrier €
unsigned short cy _id. /¢ This record number 124
cy_parent, /% Parent record no s/
- /% countsd ./
cy _ni.
cy_ni.
- cy_n2,
cy_nchn.
Cy.ﬂtltn
- ’ ey _nlmk»
/% Oftsat pointers: LT4
cy_hdfree, /e First free byte L 24
-’ Cy _hab, /¢ $-cells ay
cy_hdchn. /¢ Chains of l~cells a/
cy_hdz2, /% 2-cells .
- cy_hdtxt, /= First byte of text [14
cy_hdnam. /% name & addrenses L 14
cy _hdlmk. 7® landmarks ./
L cy_geog. /% geocodes constant in e/
/¢ carrier (text ptr) L 74
cy_gensral: /% leval of generalizatns/
w lang Cy_wndwi4l; /* Min-Max window In xy e/
unsiphead char Cy. magvrs f= magnetic variation L ¥4
cy_dipvrs /¢ dip variation s
- char cy_cb LCARRSI ZE-CARRNEAD] /9 data byutfer =/
i 21

struct zer _dat {

[92 {1 ts

{s

23

5,694,534

) 10;_23{'97 MON_13:00 FAX 415 382 2928

it o

_DUAS: CRARV. PATENTICA, IER.HI2

short
short
long
lang

]

struct one_dat €
short
1Long

b1}

struct chn_dat <
short

/

long
unsigned char

}

struct two_dat |
short
lang

p 1]

struct shp_dat €
whart

short
long

b13

struct agr_dat <
short
long

>

struct lmk_dat {
wert

FDMEL
Sheet 2 of 3 sage 49
ar_ids /e Of¥amt this rec =/
zr_next: /= Offsat of next #-cells/
v _2V
zZr_extidl 7¢ External name (Cansus)®/

zr_%. ¥Tr_yt

on_1id.
on_next .

on_+¥r» on_to
on_hdshp1
an_chn.

on_adar?
an_extias

ch_id,
ch_next
cnh_hdad.
ch_t18.
ch_hala.
ch_tll.
ch_nnak.
ch_t xt{31,
ch_parid.

ch_other:

ch_extids
ch_class:
ch_flagsi

tw_id,
tw _next.
tw_carrys

tw_axtidi

sp_haxts

sp_2%
sp_: Sp_Y?

ad_lcell}
ad_tl.ad _tr.
ad_f1.a0_fry

lm_td,
1m_next .
lm_diwm.

Ll
4]
Fil
fe

for reference froms [14

children carriers ./
Next i1-cell in chain =/
DIME cooe: ./

an_l¥. on_rt.

F1
0
FL
Vil
L)

Ju
’e
e
f1e
Fal
il
/e
il
il
re
rLd
e
e
/e
/s

e
Fil
rdd
7e
Fi
/v

/=
V4

Il

/8

Head of shape chain =/
Head oFf chain lead~ ¢/
tng to this 1-cell L.24
addresses ./
extarnal id (serial) »/

of fset tO this rec ./
naxt chain in carr ./
head of chain S-cell s/
tail ot chain #-cell ¢/
1st 1-cell tn chain ¢/

last l-cell in chain &/
nusber of names ./
names »s
id of l=~cell in parnte/
<t § for flle) ./
carrier on othar siden/
1¥ bdy chn -y
External id ./
class of feature L 74
ane=way: windys... [T3

oftset to this rec ./
next 2-cell in carr o/

Carriar with intertore/s
of this 2-cell. TI¢ =/
(#: whale file. ef
External id ./
next shape for this e/
i-cell ./
corresp l-cell ./
aoffset to this rec [24
naxt landmark Ll
dimensuion of cell ./

@ooa

25

5,694,534

26
__ 10/20/87 HON 13:00 FAX 415 262 2828 FPMEL
’ M:gm,"tsmzc&. {ER. W12 Sheet 3 of 3 bage 50
im call: /% pointer to cell ./
v Im_txtl /» annctation Y
lonhg 1m_xedm_y3 te place for anhotat ./
>
’ struct txt_dat {
. short tx_1de 78 id of this string ./
tx_nexts 7¢ pext text string ./
|] tx_1ths /= length of teant ./
char tx_texti2lt /% string of any 1th w/
2
[struct fre_dat {
short fr_nests /8 next free block ./
#r_1ths /e size of this block .s
» 3 :
sdefine CARRSCLXY (4294967296.8/368.8) /e Scals factor te Cvt »/
/= §loat uy {(degrees) toe/
[4 /e long *(2¢e32) ./
te apra = 37 ineh/unit /s
#define CARRSCLI 1 /e Scl fctr for z pre- o/
[J /¢ sumes unit=1ft L V4
sdefine MAXLEAF 10060 /% max leaf carriers L7
#define MAXCARR 15280 /¢ max total carriers ./
[] fdefine MAXMEM k- /e max carriers in nem ./
wdafine WNDWMAX 1846575 /72 maximum window size ./
/¢ to guarantes span »/
| /e 2ZewiZ in cassettes L Y4
r Qdfﬁne CARRDATA (CARRSIZE — CARRHEADY
sdefine ZER_SIZE (sizeof (struct zer_dat))
[4 sdefine ONE_SIZE (sizeof (sTruct one_dati}
egafine TWO_SIZE (xirxeof (struct two_gdat))
sdefine CHN_SIZE (sizmof (struct chn_dat))
[J
#define ONE_MAXM ((ZER_SIZE) TWO_S1TE) 7 2ER_SIIE I THWO_SIZE)
adefine ONE_MINF ((ZER_SIZE < TWo_SIZEY 7 ZER_S12€ : TWO_SIIE)
[_J
#define MAX_ZERS ({CARRDATA - CHN_SIZE - Two_SIZE) / (ZER_SIZE + ONE_BSIZIE})
Sdefine MAX_TWOS ((CARRDATA - CHN_S1ZE - ZER_SIIE) / (TWO_BIZE + ONE_BIZE))
- sdefine MAX_ONES ((CARRDATA — CHN_SIZE — ONE_MAXM} 7 ({ONE_SIIE + ONE_MINMI)
adefing MAR_CHNS ((CARRDATA - ONE_mAXM) / (CHN_BGIZE + ONE_SIZE + ONE_MINID)

. PR .
SRR T8

@ood

5,694,534

27 28
_10/20/97 XON 13:01 FAX 415 362 2028 FDM&L
@R cos

_DUAS: LHARV. PATENT “JRUCT.Hi2 Sheet 1 of 13 “~age 51

se struct.h ./
I _ s/
/e This is the gensral complax model without bpanefit of ./
/¢ carriers. It is hased on combinatorial topology. sf
78 .
/e All files are organized similarly. Recora P in »/
/s avery tile contains general info. such as map name ./
/e head of list of free records and file size. . »/
7. ./
/e Free list is a 1ist of records that have been ret- LT3
/¢ urneds due to deletions or Changes. o/
/e L4
/¢ Tha $iles ars all named conventionally (mapdxx: ./
s (map) i the map name carrisd in the descrip-page ./
/v of every file ang xx describes the fila. xx =] ./
/e for cBfile. 1 for cifile and 2 for c2file. ./
/. [¥4
/s This whole systam is modellad on the Census 2d [74
/e being almast exactly a translation from PRSCAL ./
/e inta C. - ./
/o .f
/e - ./
/¢ Original source code M, White ./
/¢ Redocumsntation J. Killick ./

- - ———— FDN&L
R — e p— -
- _DUAS: THARV.PATENT] WECT.Hi2 Sheet 2 of 13 _\”age 52
. ’- (Y}
- /. ./
/e The first (9th) racord in every file contains 'Y}
/¢ identificatien information. counts. and painters »/
- /¢ to the chain of §ree records, ./
Fa ./
/e LY
-
struct deoacrip €
1ong descid, /% id = @ for dascrip ¢/
- ’ t1lpmizes
frevhwad.
lastused:
- char sapnanel 12801
>3
- wdefine DEBCBIZE wizsof(struct descrip)
-
struct freepage {
lang freeid, se id = —id for free pg %/
- naxtfree: /% Pointer te next in chain of free recs &/
>s
-
- i
!
-
-
--
-
-
-
-
-
-
-

5,694,534
29

008

5,694,534

31

10/20/97 MON 13:01 FAX 415 362 2828

32

— FDM&L
- _nn:tw.mrm:;..mt.mz Sheat 3 of 13 Page 53
/.
- e
/s Tha c@ record contains thformation pertaining to
- /¢ a particular g-cell, The rocord number in the +ile
~ /e is a $~call jdantifier. which is in the DIME code
/e tha ipcident 1-celils.
FL
\., e —_—
- struct cirec {
- long chids /e id = recno &/
naned? /% External 3d ®/
double % /e Coordinatas ¢/
- y-
[)
P long ciheadlt . /e Head of list of incident i~cells /
bl .
® #detine CESIIE sizeaf (struct cBrec)
@
®
® f
&
L]
»
[]
A4
3
L]
ot
b-d
*

Y
.
u/
./
.
»/
'Y

@oo7

33

10420797 MON 13:0L FAX 415 362 2928

5,694,534

FDM&L
_[UAS:LMARV.PATENT]! WCT.Mi2 Sheet 4 of 13 “Yage 54
ral
T4l

Je The ci record contains informat ion pertaining to

/¢ a particular 1-cell.

The l-cell identiftar is

/o racord number and is used in the p-cell and 2-cell

/¢ pointers
"

/¢ Dascriptive information is also carried here but
/o wauld mors sansibly be carried in another #ile.
/¢ Carrying it here saves files

/s and 1/0 in this spplication.

£
I’

struct cirec €

long ciid

" trom:

to:
latt,
right,
naxtfr,
naxtto.
nextlé.
nextrt,
addrfl,
addrfr.
addrtl.
addetr,
I shapeid,
/ namel.
priorne,
nextoms
class.
nehpt

short

i

/¢ Addresses for l-cells ...

sdefine C1S12E sizeafistruct clrec)

a/

./
s/
./
[Y3
./
./
o/
s/
af
./
./
-/
af

008

5,694,534
35

_ 10/20/87 MON 13:01 FAX 415 2382 2928

FDM&L Roos

g IS 3
® _DUAS: CIARY, PATENTISTRUCT . Hi 2 Sheet S of 13 vage 55
- .
78 —_—
* = . y
te The c2 record pertains to & particular atomic .
/n Z-cell. The identifier is the 2-caell record number s
® 76 as for the §~ and i-cells. Y
e -
L]
struct c2rec <
R | c2id.
® ; clhesd2,
nemadt
n
4 .
edefine (281ZE sizecé (struct c2rec)
o
*
L]
/
e
b4
2
-
. d
4
-
=
-
b
k=

a

5,694,534
37

10/20/97 MON 13:01 FAX 415 362 2928 FDNEL

ol

_PUAS: LHARY. PTENTIBV.mCT-HiZ Sheet 6 of 13 Page 56

/e
Iid :
/¢ Shape is a string of xyz coordinates for a y-—tell
2
il
struct shapel <
struct <
double xS«
y5+

as3
) point INGHAPE]L
2]

sdefing SHPBIZE sizeof(struct shapel)}

./
s/
s/
./
./

doio

We ‘@

i

ue

i e "

e

th 8 w e e w o

(¢

5,694,534

39

10/20/97 MON 13:02 FAX 415 362 2928

/e
Fa
ie
e
-

FDM&L

TENTIS.UCT.H1Z Sheet 7 of 13

—_—

épge 57

Chains 1s a file of chain pointers pointing
to named l-cells. The l-calls arae in a doubly
linked 1ist Df cells with the same nama.

struct chnrec {

23

char namel[281%
long chnhaad.
chntails

Sdefine CHNGIIE sizeof(struct chnrec)

~

=/
./
| ¥4
[74
L7
(1)
./

/% Head of linked list of cells +/

/¢ Tail ...

LT 4

Bo11

5,694,534
41

10/20/97 MON_13:02 FAX 415 362 2028 " FDM&L

. _DUAMITMARY.PATENT: RUCT.H12z Sheet 8 of 13 " yage 58

/.
e
Fa
/e
/8
r7e
/»
/=

42

PR, 5

The nase {ndex is a search tree that points to

the chnrec #ile. This implementation uses the
vax/svei inoexad file. which appears to bhe something
like a B-trwee.

struct namnds {

>

char nanex (2831 /% The (primary) key ¢/
fe Last char is dim ®/

long chainptri /e Pginter to the chain =/

76 of nased records s/

#define NDXBIZE sizwof (struct namndx)

/o
/=
FL
Ie

Ayndx is a Peano code index to xy-coordinates
The index file is a VAX/VMS indexed file and the

/¢, kay is interlaced intager x- and y—- coordinates

o

/.
/s

(i.s. the Peanc coda).

struct xynds €

33

unsigned char xy[8N
lang 1d3

Sdefine XYBIZE sizeofistruct xyndx)

ay
./
L ¥4
./
s/
./
[T4
L ¥4

./
L 24
L V4

.s
w/

./

-

Rlo12

5,694,534
43 44

10/20/97 _MON 13:02 FPAX 4185 382 2028 FDM&L @o13

- PUAST CHARV. PATENT), JIXCT.H12 Sheet 3 of 13 bage 59
-~ vdefine MAXBL 4896

struct bknline € /% Brolen line o/
-~ int nbk 3
double KOk CMAXBK]
ybk [MAXBK 3
-~ short weepbk [MAXBX 3¢
b 3

102097 MON_13:02 FAX 415 382 2423

th (06 O € (0

{8

N D B

(4

[t

L&

b

il

45

b

- x

M:EW,”’I’ENTJST“T-H‘Z Sheet 10 of 13

5,694,534

FDM&L

¢
Page 60

AR

/e

/¢ Tive subsadel is a subset of the entire model
/¢ kept AN main menory.

It has soms header info

/¢ apd & linked list of #-+ 1-~, ang 2-cells.

/=

/e

struct clcmdl <
stppct clcell

struct clrec
»n

struct cicell {
struct cleell

struct cirec

struct shapel
double

strust cip

struct c2cell €
struct c2cell

struct c2rec
b1 .

wtruct submodel €
int

dauble

struct clcell
struct clcell
struct c2cell

b1

snextcl.
spriorcd:
c®1

enextcls
epriorcli
cl3

gl
cl_#x.
cl_¢y»
cl_txy
ci_tys
scli_l#és
aC)_rti

/¢ Painter to shaps array

/= Carrier in prograss */

snextc?,
spriorc2s
c21

ccnt »
clcnt,
cZcnt
xmin»
xBaxs
ymin.
ymaxX: .
scihead
ectaill
sclhead,
scltails
eg2head.
sc2taili

w/

./
LY
./
./
/s
./
o/

@014

47

10/20/97 MON 13:02 FAX 415 362 2928

5,694,534

FPMEL

_DUas: [MARV. PATERTISTRUCT .HI2

v
Fi
i
.
FL)

o,

Sheet 11 of 13 Fage 61

Buffer dsfinitione

struct filsbué (

33

steuct filabuf ¢

long
e

char

bufprior:
sbufnext:
bufrec)
bufiile,
bufurite,

bufsizes

/8 Linked list o/

/¢ Racord number &/
/= File id o/

/¢ 8 = no change &/
/o 1 - must write ¢/
/e Bytes of data »/

bufdatal234ali /¢ Record ®/

edefine BUFBIZE sizsofistruct filebuf)

/»
o
Fil
F L
Fi
/8
Fid
/e

Graph definitions

Yodes may or may not correspond with @-cells or
with 2-cells. If not both pointers are ML .

struct nade €

s -

long

struct cheel)
struct c2cell
struct node

short

ndids
“ndPs
snd2§
sndpriors
sndnext]
ndval)

/e Node identifiec &/

7% Pointer ta corresponding ®/
7o §— or 2-~call &/

/= Prior node in graph =/

7% Next node in graph s/

7% Yalenca &/

./
./
s
./
s

./
./
n/
[YJ
L V4
L T4
e/
L 14

Bo15

'

»

5,694,534

49

50

struct linklist #llprior.

&1lnexts
short llorients Ie

. 10/20/97 MON 13:02 FAX 415 362 2828 FDMAL i@o1e

- bl . - Sheet =] rage
o ./
/e ./
/= Links may or may not correspond with 1l-cells. If ./
/¢ not lnkl is NULL. Primal and Dual praduce graphs ./
/% that correspond with the current submodel. Chains ./
/¢ produces a raducad graph that does not. s/
Je L ¥
fe -/
struct link <

long lnkid: /% Link identifier »/

struct clcell *lnklt /% Pointer to corresponding s/

struct node slnk fra. /# From node s/

slnktat /+ To node s/

struct linklist elnksubchng /e Pginter to chain of links e/

struct component =lnkcomps /e Componant number =/

struct 1ink slnkchni /% Link in reguced gragh v/

struct link sinkprior. /% Prior link 1in graph e/

¢lnknexts /% Next link in graph LFd

N whort lnkeycled /e Cycle number (@ 1 acyclic) s/
H
struct linklist ¢

struct link vllptrs /* Pointer to a link s/

Orientatian e/

51

10/20/87 MON 13:03 FAX 415 382 2928

o et er

5,694,534

FDM&EL

_DUAS: [RARV, PATENT I« RUCT.Hi2Z

Sheet 13 of 13

sage 63

52

/e
re

/» A graph has nodes and links (directed arcs) in
Until the Kirchoff analysis
/% is done» components and eycles are not known,

#n For convenisnce & grapgh is stored 3s a single
7e component with negative cycle and acyclic counts
70 wuntil Kirchot#é Ostermines the facts.

/¢ connmcted cORpPORENtS.

/»

il

struct compansnt €
struct node

struct link

short

struct componant

ha]

syruct graph {
! struct compohent

shart
p 1]

scppnanead,
scmpndtaili
scmplkhead.
scaplktalls
cmpids
cephnd.
cmpnink.,
cmpneyc
cmpnacycs
ecapprior
ecapnextt

7= Componant

sgphcaphaad.
sgphcnptaill
gphncep

ident */

./
-/
./
./
./
./
u/
./
s/
a7

Ro17

5,694,534
53

IQZZOIST MON 13:03 FAX 415 262 2928 FDM&L

_DUA®? CMARV, PATENTIBUILDLEF 331 Sheet 1 of 7

lI.‘U..-.#t‘..‘..‘.‘.-‘tllUtt.‘.l"‘..'#"#‘.ﬂ.'..‘!‘t‘.‘l/
/. ./
/7% Build all leaf carriers from a 2d database s/
/* M, White w/
FL) LY
/Oi.tt.‘l...‘.t't‘..nt!tlt'l“b‘ltvtl*ti“tlt‘tttﬁlt“‘..ll

#include ¢(stdio.h?
#include (ctype.h}
#include “[sources.includeldefs.h”
#include "[sources.includeldstruct.h™
#include "[sources.includelglobal.h”
#include '"{sources.includalcarrier.h”
#include "[sources.includelcarrext.h”
#include "[sources.includeldin.h”
struct submooel *newsub(}}
main(argcs argv)
int argcs
char sargvils
<

unsigned char susedzcell,

sage? 74 age of carriers

Page 64

u/

54

struct submodel *+seen2celll /4 to keep track of 2-cells ¢/

struct carrier *cy. rcarry(MAXLEAF]. sbuildcarr O3
long windowlMAXLEAFIL43)
struct descrip drect

char ans(®®l, *sell235}, pltrs
int continjg

double nxmif, xmaxs ymin. ymax3
iong seed. max2;

int minx, miny: maxx. Maxy. count?

int i, J» k, fdv rtn, casstid,» statusd
FCB cyfcbs

char fnamelB@2:

unsigned char epc. #pcz;i

short carrid, /% current carcier id ¢/
maxcarri

printf("Carrier construction\nin®}s

carrig = 21 /% reserve 1 for parent carrier »/

if targc)= 2) T
strepy (Currmap. argvil])s

else {
printf{"Enter map name -)"1}
gets lcurrmap)

>

printf("Current map is %s\wn". Currmap)i

rdmap (currmap)i

$rdic2¢ile. OL. kdrec, DESCSIZE)
oax2 = drec.lastused:
printf(’%d 2-cells maximum\n”, max2it

pC = usedcell = mallocimax2): /» keep track of 2-cells used and ¢/
/+ sncountered by amoeba »/

/¢ buffer age for carriers &/

pc2= ssen2cell = walloc (max2esizeot (sseenZcell})s
age = malloc(max2)i
for (1=P: idmax2s ++4)

spo+t = @ /¢ No 2-cells used yat s/

spc2++m NULL;S /¢ No 2-cells sncounterad yet o/

do €

/% window covering sach carrier »/

/% map name from cmd */

@o1s

5,694,534

10/20/D7 MON 13:03 FAX B
. . E 415 382 2928 FDM&L Znis
_pual:EHARU.PGTENT]BUILDLEA..Cil sheet 2 of 7 lage 65

aski("Avoid 2-cell =¥"» ki)s
used2cellfil = 1i
» while (i) @13

Ie
+ Initialize 2-cell markers
»/
contin = 13
aski ("Enter seed 2-cell fer amceba —-)"» kseed):
/e
« Ratrisve closad nhbd of seed 2-cell
L7,
curaddz (seed) §
bdy2(€13
bayl ()3 -
rang® (ke urr=2 xmin. KCurr=) xmaxy &Curr-)ymins rcurr=)ymax}i
ssan2celllsesd] = currs
curr = newsub())
printf{"Creating LEAF.DATN"} 3
status = derevate (&cy$Chba »Jmat,. dat* MODE_WRITE. FABSC_FIX: S512. SOt
if (status) &
fprint f (stderr. "»¢ ERROR dcreate status = X@4X\n". status)i
anit (status)s
T
while tcontin) {
/»

e Look for 2-cell already in memory: if that fails look for one
* adjacent to a 2-cell already used
»
for tim1t (i(max2) &&
(used2cell1Lil ¢
(seen2celllil==NULL) I {seanZcelllils= -1)13

++{)
3 /% loop control does job ./
if (1 >= max2) .
$or (iz1! (iimax2) & {used2cellfi) i (geen2cwl 1 iJ==NULL)) ¢
*+3)
! /% loop control dows job */
1§ (i) max2) <
contin = @ —
sead = B3
h 4
elise {
seed = i}

/e it max in memory exceaded free onk o/
if {(carrid > NAXNEM)
free(swapoldicarry, carrid: kcyfcb. agel)s
14 (cysizelcurr) (= Iesizeof(struct carrier)/1®
amoeba (seed. '3+ used2cell. sesn2cell)s
ey = carrylcarridl = buildcarr (curry carridis
printf("Carrier %3d size = %30 "
cy-}cy_10» sizecarricy))s
countseen (seen2cell, max2}s
agelcarrid]l = 8%
$or (k=P5 ki85 ke+t)d
windowlcarridllkl = cy—3cy_sndwikls
for (i=21 i{carriat +¥i)
1¥ (overlspwindow(carridl. window{il)) {
1§ (carrylil == NULL?

5,694,534

__10-20/87_ NON 13:063 FAX 415 362 2828 FDM&L @ozo
P 3 e A T A S RSBy A 0 e ek L e e
_DUAR: [MARY.PATENTIBUILL ¥.C:1 Sheet 3 of 7 age 66

rollin{carry. 1, carrid,
ucyfcb,. agel)s
linkeib tcarrylcarridl. carryfil)s

ageli] = 1Yy
¥
writecarr (carry, carrid. &cyfcb)id
carryCll = carrylcarridls /¢ make 1lst point last
++carridl
b4
elsa €
gprint f (stderr,"2-cell %5d too big we®s”,.
seed)’
usad2celliseed] = 13
>

currclr s
if (lcarrid X 168 == 8) {
for (i=11 ilcarrids ++1)
writecarr(carrys i+ koyécb):

>
>
for (i=l} i(carrids ++i}
writecaer (carry, i» kcyfcb)i
dclase(cyfcb) s
closemap (313
printf(“Done... 29d carriers\n”, carrid)s

b3

I.cttoottt..to't.l..-tt‘#tc-t.t‘i‘ttn.ototttot-.t‘t!l.sto/
/= o/
/% Link sibling carriers >/
7¢ Thiz isclates bounding l-skeleton for carrier blks &/
re M. White L T4
Vil */

[ONREENARURNEO S HSERASRANEEIBURSEITIIRERARSSICNAERRNBIENSN/
int likschnt(cyl: chl, £y2, ch2} /e return TRUE (1) for chains ./
/e with same classs flags and &/

/% names LY
struct carrier scyl. $cy2s
struct chn_dat eschl, »ch2;
{ N —
struct txt_dat etx, etxl. stx2}

int 1%
char estri
if (chi-dch_nnam != ch2-)ch_nnam) return{@t
if (chl-)ch_class != ch2-)ch_class} returni®}s
1§ Cchl-dch_flags i= ch2-)ch_tlags! returni(P}i
for (i=8; i{chil-)ch_nnami ++i) {
tul = (Sreruct txt_dat ») ({char wlcyl + chl-)ch_txtLil}s
tu2 = (struct txt_dat) ((char s)cy2 + ch2-)ch_txtLi1)3
if (g == @)
}
if (strcmpltxl-rtx_text, tx2-)tu_text) = @)
return(P??

¥
Fs
» Similar chains - return true
»/

returnti}s /* passed all tests s/

5,694,534

10/20/07 MON 13:04 FAX 415 382 2928 FDM&L
_DUAS: CMARY. PRTENT IBUILDL wCt1 Sheet 4 of 7 >age
.
Ja ./
I!Qt.‘.!I'O‘..'O.'...'t.“ttt.tt-...tt.-t..‘.t.t.'-.t‘t‘l/
/» w/
int crientchich) /% return orientation ./
struct chn_dat schs /* -1 for non-zeros on rt w/
s® +1 for otherwise ./
{

struct carrier &cyt
struct one_dat eoni
int arient?
cy = (char ®)ch - ch-)ch_idi
on = (char ®)cy + absich-)ch_hdll}s3 /» hmad 1-cwll =/
orf{ant = signich—Yeh_hdl}i
1€ (on—-lon_rt != @)
orient = -orienti
raturn(orient)

¥

/ ./
/..--acvlt“t.tt.o..t-t-..o‘ao--ul-att'a.otutoil.t.-t#tttl
/» s/
/% Find a chain in cy2 similar to chl in cyl ./
’e ./

struct chn_dat *findch(cyl. chl. Ccy2)
struct carrier »Cyl. scy2s
struct chn_dat *chl3

<
struct cha_dat »ch2i
struct one_dat sheadl. *taill, sheadz. *tailzi
short off. orl, or2i /e pffsets and orientations e/
orl = prientchichil)?
for (off=cy2-)cy_hdchn: off!=@; off=ch2-)ch_next) {
ch2 = {gtruct chn_dat #){{char %)cy2 + off):
or2 = orientchich2:s
it (likechn(cyl, chl. cy2: ch2)) (
/e now check 1-calls on the end of the chain */
headl = (char ¥)cyl + abs(chl-)ch _hdl)i
taill = (char #)cyl ¢ absichl-)ch_tli)i
head2 = (char #)cy2 + abs(chZ-ich_hdl);
tail2 = (char e)gcy2 + abs{ch2-)ch_tH)s
i¥ ((headl-)on_extid == headz2-)on_extid) &k
(taili~)on_extid == tail2-)on_extid) &k
forl == ~or2))
returnich2) 3
1€ (theadi-Yon_extid == tail2-Yon_extid) &k
(taili-)on_extid == head2-}on_extid) &&
(orl == or2})
return(ch2) §
?
>
return (NULL) 1
3
/e «/
I..l...t"‘lll.....‘.‘..'.‘t.‘l.‘.!‘t'll-tl‘"t"!'-‘.‘../
L L4

linksibtcyl, cy2)
struct carriec scyl. rcy2i
b

687

@oz1

5,694,534

10/20/87 MON 13:04 FAX 416 362 2828 FDM&L @oz2

- _DURS: (RARY. PRTPNTIBUILDLERF.C11 Sheet 5 of 7 Page 68

short . .1 of€23

- struct chn_dat echls #ch2i
seruct one_dat soni. son2i
struct zer _dat ezrl, vzrls

- struct txt_oat stx, etxl, sex2l
char strif12€1, str201281;
char *Etr(
- "
» Sean cyl for houndary chains
.
- splitpairicyl. cy2}l se split chains at commonh partition pointe o/

for todfiwcyl=rey_hdchnl ofF1 =g offischl-lch_next) <
ehi = istruct chn_dat =) {lchar =icyl + affi)

- onl = {struct ona_gat =1 {i{char eicyl +
abs(eni=ich_holili
i¢ (icanl-don_I¥ == @} 1] (oni—ian_pt == "))
- tehl-ich other == B}1) {

cha = findchicyl. chl. cy2)t
i+ ten2 = MALY o
- an2 = {char wICy2 + absich2-lch_hdl)s
14 (Ctona=ron_1¢ s #} &k (on2-Yon_rt ‘= B il
tch2-1cn_other e g}) <
- . tprintd (utderr,“EANOR - cy Xd ch Id other k4 rematchedin”,
cy2=)cy_tas chZ-)eh_id cha-ich _rther)s
fprint € latdere to = cy id en Xd other Xdwa".
- cyl-tcy_ids chi=ich_id. chi-)ch_other}t

1

/e matchdepichl. ch2); /= debugging »/
- zhZ=ich_pther = cyl-)ey_id:

chi=jch_opther ® ¢y2-3cy 381

- >
»
b 4
- iu A4
; ansore I3
’e L
- #e Splir Doundary chains at compmen branch paints s
/4 in a pair of carrierd, {.e. identify essential L ¥4
/= #-Culls. -
— Fal ./

splitpair lcyl, cyd)
struct carrier =cyl. scy2:

- 4
atruct chn_dat =chl, =chzi
seruct zar_oat *zri. eardt
- STPUCT one_OAY soh. eanij
short affl. of42, isbdy. samesplits
ao
-~ sonesplit = #: /% count of splits this time thru loop ¢/

for (offiscyl-lcy_hdchnt off1)9t offlschl=)ch_next) ¢

chi ® (char =icyl + offlt
- on = (char tlcyl * apsichi-=Ich_hdlis

isbdy = (ton=jon_Lf == §] 1] (on=iomet == #))3

14 (isbdy) €
- /% is a boundary chain - £f with other carrier w/

tor (offZmsy@-)cy_hdennl of£2)84
otf2nch2-)ch_hextr {

5,694,534

63 64
10-20/97 MON 13:04 FAX 415 382 2828 FDM&L
_DUA®: LPARV, PATENTIBUILDLL .Ct1 Sheet 6 of 7 age €S
ch2 = (char #)cy2 + aff2:
on2 = (char $)cy2 + abs(ch2-)ch_hdll:
isbdy = (lon2=len_lf == @) i1
(onz-on_rt == 9))3}
1§ tiabdy k& l1ikechn(cyl.chl, cy2.ch2)) «
somesplit += splitchn(cyl.chl,
cy2.ch2)}s
¥
¥
b
¥
> while (somesplit > @33
3
/» (Y4
I.l.'.tll.‘t““O.ltl0"0‘.'.“itl'l‘t"tt.t‘tt"/
VA »/
/+* Split a pair of chains at every point of ./
re departure — identify essential g-culls */

int splitchnicyl. chls cy2. ch2)
struct carrier scyl., *cy2s
struct chn_dat echl., sch2i

<

4l

struct one_dat won;

short nsplit. startsplit. chllth, ch2lth. offl, 1. j°

struct {
struct onea_dat ®onxj 7+ 1-cell pointer %/
shoert offus /v ¥~ opffset LT3
int subser:
} zch[MAX_ONES]. /% array of nodes from chn 1 to match s/
ychIMAX_ONEE]: /* array from chain 2 LI4

+ tist i-cells of chain)} in order

»/

Ll

chllth = B

for taffl=chl=)ch_hdl! offl!'=@: pffl=on-)on_next)
an = (char »)cyl + abs(afflls
zchtchlilthl.onx = oni
zchichllthl.aoffx= offl}
zchichllthl.subscr = -1t
chilthess

) 4

¢ List l-cells of chain 2 in order

n/

/.
-
*
-/

ch2lth = @t

for (offl=ch2-)ch_hdl; offltags offi=on=-lon_next) {
on = (char ®)cy2 + abs(offl)s
ychich2lthl.onx = ongt
yehtchZlithl.offx= offll
yehich2ithl.subscr = 138
ch2lthess

X

for (1=@% 1{chllths i++) £

/¢ mark as unmatched ¢/

/% mark as unmatched =/

Scan both lists to locate corresponding i-cell (i€ any) in other
chain

for (j=B¢ (j tch2lth) Uk (zchlil.subscr== =1)i j+42

@oz2a

5,694,534

65 66
_ _10/20-87 MON 13:04 FAX 4158 382 2p28 FDM&L
Duag: CRARV. FATENTIRUILDL <.CF1 Sheat 7 of 7 “age 70

if {zehCil.onx=)on_extid == ychljJ.bnx-)on_extid)

zchlil. subser = {3
¥
for (i=@: i(ch2lth; i++)
for (=03 (jichllth) &k (ychlil.subscr== —1)t j++)

if (ychiil.onx-)on_extid == zchijl.onx—)on_extid)

ychlil.subuer = {19

2
/4
¢ Now splift both chains at each branch paint
. After ist split some nodes may be in other chains
. and must be discovered and split in subsequent passes
./
nsplit > @s
startsplit = nsplit:
for (§=1: (id<chllth) & (nsplit==startsplit)i 1++) ¢
if (ttzch(i~1).sudscr == —1) && (zchlil.subscr != -1}) !
({zchii-1]l.subscr != -1} & (zchlil.subser == -1)))
cyspltchl(cyl. chls zehfi-tl.offx. zchlil.offx);
nsplites;
>
b
/n
¢ Chain 2 splitting chain 1
./
startsplit = psplits
for (i=l3 (i(ch2lth) && (neplitesstartsplitl: i++) €
1f ({{ychli-1).subscr == -1) & (ychlil.subscr '= -1)) |
{(ychCi-1].subscr != =1) && (ychlil.subscr == =1}))
cyspltch(cy2, ch2, ychli~1l.0ffx, ychlil.offx):
neplit++s
¥
}
e

* If either chain is a loop split other at essential node
» since it may be chosen arbitrarily

./
i¥ ((neplit==@) Lk
({chi=)ch_naP == chi-ich_ti@) I e
{ch2-)ch_hd® == ch2-)ch_ti#))) {
if ((ychIBl.subscr '= —1) && (chilth) 1)) <
cyspltch(cyl. chl. zchl@J.0ffx: zchl[1l.0¢+x)3
nsplites;
}
it ((achl@l.subscr != -1) && (ch2lth » 1))
cyspltchicy2. ch2, ychl#l.pffx, yehlll.offx)}
nepliters
>
¥
4
¢ return split or not
./

returntnsplit)s
> R

i
L

<

5,694,534
67 68

— 10/20/97 _MON 13:04 FAX 415 362 2928 FDN&L dozs

Sheat 1 of S dage 71

_DUAS: CMARV. PATENTIAMOEBA. 1

/"“..-l“‘-'.‘-llt‘““'..'I'.“‘I‘l.“.."ilt.‘i‘i...‘l

T4 w/
/+ Construct carrier blocks by absorbing 2-cells «/
/¢ one at a time until maximum size for bBlock ./
/e pr highar priority roads are sncountersd 7/
e L ¥4

It“‘bl‘ti00'.!0"“"0‘#.ltitbﬁttliﬂttiln.tit.‘..t.t‘."/
#include (stdio.h)

#include “"{sources.includelcarrier.h”

#include "Isources.includeldefs.h”

#include “(sources.includelstruct.h”

#include "Isources,includelsxtern.h”

[/ L ¥4
/USRERHCERGSRERSUN NP ARG UEBS ST SHALABRN IR UMW SAIRBETREINSS
I£) L T4
/% retuyrn 2-cell id if on boundary @ if interior ./
long othersd(pl: used2cell) Jefunc_names/

atruct clcell epls
unsigned char SusedZcelll

<
i1¢ (!usedcelllpl-icli.left])
return(pl=ici.left);
if (‘used2cellipl-dcl.rightl)
returnipl-)cl.right);
return(@l}
3
F 3 ./
PAL IRt EI T LI LIS R IR Y PRSI LT IR S Y2 22 10 ¥y
Fi w/
/% bring 3 2-cell into memory if not already in L 74
struct submpodel +grabZcelllid. usedZcell. seenzcell) /e func_namee/
long idi /* 1d of Zcell s/
unsigned char *used2cells /¢ flag e/
struct submodel *sasnZcelllls /¢ popinter to single closed 2-cell s/
<
struct submodel wssholdi
if tid (= @)
return (NULL) 3
if (used2celllidl) N
return(NULL ¢ =
/+ check for never sesn or never retrieved s/
if (({seaenZcelllid) == NULL) !! (seen2celllid] == =13}) {
smhold = currs:
curr = ceen2celllidl = newsub ()|
Curadd2{id)s
bdy2()3
boyl1tss
range lkcurr-)xmin, &Gurr=)xmax, kgurr-dymin. eure=>ymax)$
curr = smhold}
>
return(seen2cellfidl)s
¥
. ./
/..I.#O“ll".‘.---‘.'t.‘il.tl“‘.l!‘.‘..‘lt...“i‘t""t/
Vi -/
/¢ Main leaf carrier buyilding program LY
re L ¥

int amoebs(seads intclass. used2cell. seenzcell) /efunc_names/

5,694,534
69 70

10/20/07 MON 13:035 FAX 418 382 2028 FPM&].
_DUA: [MARV. PATENTIAMGER/ 11 Sheet 2 of 5 Page 72
/¢ returns count of 2-cells assimilated »/
int sead: /# seed 2-cell ./
unsigned char intclassi /* major beundary class ./
char sused2celli /% tally of used and avail 2-cells ./

struct submodel esesn2celill: /% pointers to single 2-cell submodels */

/s
-

/.

/¢ seen2celllil = NULL for 2-cell never »/
s encountered! = -1 for adjacent to built e/
/% carriert (address) for 2-cell retrisved s/
/¢ but not yet used v/

struct cédcell »tailds /¢ pointer to remember prior state of submodel */

struct cicell epl, /e utility pointer ./
*sells, /¢ pointer to tentatively selected i-cell »/
taill, / pointer to remember prior state of submdl »/
dummyl: /¢ dummy to avoid NULL polinters »/

atruct cZcell ep2, /e utility ptr ¢/
*tail2s /= pointer to remsmber prior state of submdl »s

‘atruct submadel ssmhold./® pointers to hold aside current submodel +/

ssphold2;
long CSe
side. /e 2-cel)l id on other &ide of 1-cell s
selside:/» selected 2-cell id w/
int major.minar, /® major bdy flag »/
markplc, /% mark place in amoaba flag #/
dy /¢ pctg overlap of 2-cell wndw With carrier #/
dsel, /e overlap of selected Z2-cell ./
candsz, /¢ size of carrier block for 2-cell =/
selsize, /¢ pext 2-cell candidate data ¢/
sizethresh., /% space remaining in carrier block +/
sizelim /% limit on carrier size in bytes e/
sizeck, /% flag that size is not too big »/
notdone- /e flag ¢/
LT /e caunt of 2-cells in carrier */
first2cell! /¢ first 2-cell »/
unsigned char maxclass?! /¢ max class boundary crossad =/
Initialize
maxclass = intclass-1t /¢ kaep track of highest class bdy */

dummyl.cl,class = 7§° & @xFF: /% cross *4* but not '3 class bdys s/
duneyl.cl.ieft = dummyl.cli.right = -1%

currclr(); /¢ clepar current submodsl and return memory &/
frealcure)t

* Get current submodel for seed 2=-cell

./

/e
L)
L 2

curr = grab2cell (seed, used2cell, seen2call)
seen2callliseed] = NULLS /% used it up */

used2cel ligeed] = 13

first2cell]l = seed!

nzZ = 1%

used2calli(sendl = 13 /e mark as usad s/

range (keurr-rxminy dcurr~)xmax: &Curr=-)ymin. bourr=)ymax)i

Loop until boundaries encountered or size max

tail® = taill = tail2 = NULL:
najor = @3 /¢ no major bdy so far &/

Roze

5,694,534

71
72
10/20/87 _MON 13:
107 __MON 05 FAX 415 382 2928 FDMEL @027
_Dua®: (MARV. PATENT JAMOEDBA 1 sheet 3 of S rage 73
markplc = 13 /% flag — mark place after @ach 2-cell */

/% until major bdy sncountered */
sizelim = 93s (cizeofi{struct carrier))/199:
p2 = curr-)cZheads /% to get thru while test 1 time */
while ((siz.nk-(cs-zysizet:urr|! ¢ sizelim) &k (p2 '= NULLY)
rlngi(tcurr—)xm:n- SCUre) KmaKy acurr=>ymin, KCurr-}ymax)3

++n23
i
e Select next 2-cell., Choase onhe with max window Overlap but not across
- priority boundary.
./
dsel = 01
sell = Ldummyls
selside = O3
sizethresh = sizeaf(struct carrier) - CS3
selxzize = sizethresh + 13
/I
* Loop thru all i-cells lnoking for adjacent 2-cells
- to find lowest pripority boundary ang then
L selsct candidate having most overlap and then smallest siae
g (this captures tnterior l1akes and islands}
./ ’
p2 = NULL:
for (pl=curr=)clheads
{p)'=NULL) S 7% while there are 1-calls ¥/

plepl-inextcl) L
4 ((side=pthersd(pl. used2cell)) ro £
7+ Only select i¥ higher or = class than max ¢/
1f (minorshighcls(pl-)cl.class- sell-dcl.class)) &
smhold = curr? /s save current submodel
/e get workspace &/
curr = grab2celltside, used2cell.
sean2cell)s
if tcurre t= NULL) £
g = rangovip(sahold. curr)s
candsz = cysize(curr)i
¥
elzse {
da= deal-lv__
candsz = selsizerl:

h 4
if ((d)dueld !
tpl-dcl.class 1= gpll-tcl.class) |
(cde=denl) k& (candsz{selsize))) <
major = highcls(maxclass.
pl—icl.class)t
sell = p1l
asel = o3
selsize = candszi
selside = midel

b
cure = smholds
b4
>
>
4§ (sell == Sdummyl) { /e if sell hasen’t changed "/
seed = P8

p2 = MULLS

5,694,534

73 74
~Ds20/97 MON 13:05 FAX 415 382 2828 FDM&1, Bozs
_DURS: CMARV. PATENTIAMOEBA 1 Sheet 4 of 5 vage 74

markplc = 13 /7% nothing adjacent — aark place +/

H
else
sead = salside’

* MNeworize current submodel if a major boundary about to be crossed
L or if notbing more adjacent

if ((major) {! markplc)
72 turn off markplc 1f najor boy s/
if (major) {
narkplc = P
maxclass = selli-)cl.class}
>
taild = curr-)cteil;
taill = curr-)clitail}
tail2 = curr-)c2tails
>
if tseed) @) (
/e
* Aasinilate sead 2-cell into full submodel
./
P2 = seencelllseed)-)c2heads
assimnil tseenZcelllseedl) s
used2celliseed] = 1; /% mark as used ¢/
b
>
if ((tail2 = NULL) M% ('sizeck ;! major))
/* trim submodel back to last major street or if too big e/
used2celllseed] = oy
p2 = tail2:
if (p2 'w NULL)
P2 = p2-)nextc2s
while (p2 '= NULL) (
usedZcellfp2-)c2.c210]1 = @3 /% not used yet e/
-—n23
P2 = p2—)naxtc2l
¥
trimsm(tail®, taili. tail2): —
3
e
* Relesase memory for single 2-cell submodels assimilated
*/
ng = 1%

printft"2-cells: 27d", first2cell):
for (p2mcurr-)c2headl p2!sNuLL3 p2=p2~-rnextc2) {
1f (seen2cellip2-ic2.c2id) != MARL) <
++n2t
printf(" 17d", p2-)c2.c2id}t
1f {((N2XB) == @)
printf(“\n "1s
smhold = curers
curr = seencelllp2-)c2,c2idls
currclr ()
jreei{seen2cel 1lp2-)2.c2idl)
seanzcel 1(p2~)c2.c21d] = NULL?
cCurr = gmhold;

5,694,534

75 76
10/20/87 MON 13:05 FAX 413 182 2928 FDN&L @ioze
_DUAS: CMARV. PATENT JAMOEBA. 1 Sheet 5 of 5 >age 73

b
printf ("\n")s

I
s Find adjacent 2-cells
»/
for (ple=curr=)clhead! pl!sNULL? plspl-dnextcl) <
if (lseen2celllpl-icl,laftJesNULL) W& tusedg2calllpli—ici.lnftl)
seenZcellipl-)cl.left] = =13 /% mark as seen s/
if ((seen2cellipl-)cl.rightlsshULL) && ‘used2cellfpl.cl.rightl}
seenZcellipi-dcl.rightl = —13
b
return(n2)’ /¢ count of 2=cells assimilated &/
}
/e v/
P Ty e PYS TR ST PR LA T R A S L DL L LY 2 ¥
/n ./
/e Delete last elements added to submodel ./
trimsm(taild. taill. tail2) /efunc_namew/

struct cocell stailds
struct clcell *taills
struct c2cell =tail2s

<
while {(curr-)cPtail != tail® &k (curr=)c@tail != NULL))
curdel®(curr—chtail)s
while {({curr-)cltail '=s taill) && (curr-lcltail != NULL)) {
curdell lcurr-)cltail)t
b
while (lcurr=)c2tail = tail2) &k (curr-)c2tail != NULL))
curdel2(curr-ic2tail)s
b

5,694,534
77 78

1072087 MON 12:08 FAX 415 362 2028 Fone1, godo

_DUAS: [MARV.PATENT]1 OCARR.Ct1 Sheet 1 of 5 2age 7€

JONBANBUS P ASE OB A PP RB A AN B s PP SHAN NS EINABSISELBITPOD /S

~ /= ./
/¢ Build a carrier from a 2d submodel L7
/e M., White ./
—r /» 'Y,

FOSSSONUENEP RN AP RNN PSSP U KRGS FECRIR SIS HCT LG NSRS IFBNN/

¥include (stdio.h)
- Winclude (ctype.h)
#include “[sources.includeldefs.h”
#include "Isources.includelstruct.b”
o #include “"Lsources, includelextern.h” .
#include "Isources.includelcarrier.h”
#include “Csources. includelcarrext.h”

Lo struct submodel *newsub ()3
’e e/
PRI IRl E IR T I I FYS PI YT ISP PY YT I IIYYY T E TR Y Y Y ¥y
- Jw ./
/¢ Build carrier from current submodel ./
struct carrier sbuildcarr(sm, id) s« func_name =/
o struct submodel *sp; /% sub model teo be converted &/
short ids
L4
L struct carrier oci

struct cdcell wpd;
struct clcell =#pl, #3Q11
hd struct c2cell epz:
struct chneec chns
struct zer_dat 2. wzpi
A struct one_dat o. eops
struct two_dat t, atps
struct adr_ogat a. saps
o struct shp_dat 3. sep. wpricr}
struct txt_dat snamer121;
struct link ®lki
- struct bknline bkns
short i, j+. &k nnames
struct link esliks
e atruct linklist «]llps
short offl, offs, other, zrid: -

char str(128)3 -
N unsigned char class, flags:
int lastorient. samely
long currnamei
Ao struct cip scurrlé> scurrrtt
unsigned char currclass!
struct graph sg, scnj
1 struct component »*cmpt
struct submodel essmsave!
long chaini[2891; /¢ chain af 1-celle in child s/
N int nchainls;
[
.
> e/

SmSave = currl
cUrr = cms?
- c = ngucarr(}s
c-dey_1id = ids
/»

79

10/720/8T MON 13:08 FAX 415 362 2828

* 2-cells
/s

5,694,534

FDME&L Ro31
_DURD: CMARV.PATENTISAT RR.C:1 Sheet 2 of 5 age 77
s l-cells
./
for {pl=curr-)clhmadi P1!=NULL3 pi=pl-)nextcl) <
char wcp?
/*
* zero antire entry
./
cp = (char &) ko3
for (iw@1 i{sizeof (O): ++i) cCpL1d = @5
,e
s +$rom P-cell
./
pe = £indd(pl-icl. froml)s
1§ (P2 (= NULL) <
z.2r_x = = (CARRSCLXY * pB-)cP.x}3
2.2r_y = CARRSCLXY ® pO-icP.y}
z.2r_z = CARR3CLZ ¢ pB-—)ch.zi
z.2r_extid = p#=)ch.c¥ids
o.on_fr = cydckaddicy k2?3
/¢ showlcy (k2. stdoutl: 7
if (a.on_¢fr == @)
print f(atderr, “Can’t add Brcell %s\n®.
str)t
2
else {
grintfistderr. “Can’t find #-cell Xld\n",
pl-dci. from!;
c.on_¥fr = 8%
>
currname = pl-)cl.namels
currclase = pl-lcl.Classt
e
.
¥/
bkn.nbk = O3
appnditpl. 1. &bkn)s
Id)
« To 9—call
*/
PO = find@ipl-dcl.to)} o
i (p@ ‘= NULL) < .
Z.zr_x = - (CARRSCLXY » pB-)CP.x))
z.2r_y = CARRSCLXY & pP->c@.y8
z.2zr_z = CARRSCLZ ¢ pP-)cd.z}
z.zr_extid = p#-icO.cOids
c.on_to = cygckadd{c. &z)!
fe showlicy (&kz. stdout)t =/
1¢ (c.on_to ws &)
printf{stderr, “Can’t add 9-cell Zs\a"«
str)y
)}
else {
printf(stderr, “Can't find #-cell Zld\n*. pl-)cl.tols
c.an_to = #1
b 4
V4l

5,694,534

10/20/87 MON 13:08 FAX 415 382 2828 FDNAL @oa3z
_Duﬂ!:[HﬂRV-FﬁTENTJSHTOC& .Ci1 Sheet 3.0f 5 raga 78

o.an_1¥ = @
p2 = find2(pl-icl.left):
1€ (p2 !'= NULL) <
t.tw_carry = 93
t.tw_sxtid = p2-ic2.c2idi
o.on_)f » cyZckadd(cs &t)i
if (o.on_1lf == @)]
printf{stderr, “Can°t add 2-cell ZLs\n",
strl i

>
/e Right side ¢/
g.on_rt = @9
p2 = Find2(pl-lcl.right)s
if (p2 '= NULL) <
t.tw _carry = O3
t.tw_extid s p2-)c2.c2ids
Q.on_rt = cy2ckaddic. &t}
if (o.on_rt e= @)
print f(stderr, “Can’t add 2-cell Xs\n'y
str)s
>
/% External id »/
o.on_extid = pl-dci.clidy
switch (pl-)cl.class) {
case "1°': case *2': case '3'! case "4’ case 'S':
case,'8': case *B?! case 'C’': case °D': case 'E':
case 'B': case '9'! case 'F'! case ’N'! case 'P’:
case 'R’: case 'S': case 'U': case '2'! case 'é&':
class = pi-dcl.class;

break)
default?
class = '3’%
}
flags = £3
/7w
& Namnes and addresses
“/
if tpi-)cl.namel) &}
fratchnfile: pi-icl.namal,
chit= CHNSIZE)S
strxfr(str. sizeofistri-l.
chhn, hame.
sizeof (chn.name))
strtrim{str. sizeof{chn.namel);
namel[@] = cyaddtxt(c. str)s
nname = 1%
o.on_addr = cyaddr(c.pl,a);
/. b 3
/ne/
b 4
else

nnane = 0%
nffi=cyaddl (¢, &a¢« name. nname. class.
flags, pl-icl.namel)?
1f (off]l == @)
fprintf{stderr, “Can't add l—cell Ze\n“, str)j

else {

5,694,534
83 84

10/20/87 MON 1J:08 FAX 415 182 2028 FDME&L

_DUM:[MRV-PQTENT]S‘ITOC! Wil Sheet 4 of 5 2age 79

= (struct one_dat *)({char ®)c + offlidy
y /% and of welse for cyaddl «/
.
¢ Shape chain
./
prior = NULLS
gougpk (kbkn. 5.8)7% /e generalize */
forr (1m]% iC(bkn.nbk~1% «+i) <
if tbkn.keepbklild) {
=.8p_x = —(CARRSCLXY * pkn.xbklil) s
S.Sp_Y * CARRSCLXY % bkn.ybkEill

s.sp_z = CARRSCLZ = 85 /% zeérd for now =/

offs = Cyaddshp(cs Op- prior. &s)i

dos3

prior = (struct shp_dat #)((char ®Jc + offs)s

if (gffs == B €

fprint ¢ {stderr.
"Can't add shape 1-cell %ldin”,
op-ron_3id) i
i = pl-)cl.nshp + 13 /s farce exit *
>
3
2>

> /% gnd af loop for l-cells #/

curr = Ensavel

returnic!s
>
/e ./
I.“..."‘.I...t‘..‘..‘i.l..‘t.“t“t“!....."lt/
/» ./
chksplit lcy: class: p@} /s Func_name &/
struct carrier ®cyi
unsigned char classs
struct cOcell ep@i
<

struct clcell epls

long namids

struct submodel tsavsms

SavSm = currsd

curr = nawsub ()9

struts(pd-rcd.chid)s ha

for (pl=curr-)clihaadt pl!=NULL? pl=pi-)nextcl) {

namid = @o¢
1f (pl=)ci.class (class} L4
i$ (pamid == @)
namid = pl-dcl.namels
if (namid '= pl-icl.namal) <
currclridi
fresicurr)’
curr = savsmpi
raturn(l)s

>
2
currclril)s
fresicurr):
Curr = Savam;
return(P:

5,694,534

10/20/87 MON 13:08 FAX 41§ 382 2828 FDMEL @o3q
_ e T e e v o e =
_DUAB: (MARV. PATENTISMTOC [.CI11 Sheet 5 of 5 ‘age BD

cyaddr (carr,pl.ancy) /¢ func_name */

struct carrisr *carei
struct clcell epij
struct one_dat oncyi

<

struct adr_dat sadrs
struct chnrec chng
char strL491s

int oFf3

off = gyallocicarr. sizecf(struct adr_dat))y
1f (off = P
returni(®) i
adr = (struct adr_cdat s) (i{char ®)carr + offl}
adr-Yad_lcell = oncy.an_1d* Je reveérse ptr ./
adr-}ad_tl = pil-icl.addrtls /% copy the addraessas ./
adr-j)ad_tr = pl-icl.addrtr:
adr=)ad_f1 = pl-cl.addrfl}
adr-Yad_¥r = pl=)cl. addrfri
returnioffls
re } «/

87

10/20/87 MON 123:06 FAX 415 1362 2928 FDME&L
_DUAD: [MARV.PATENT] LDANC.Cs1 Sheet 1 of 2 Page 81
Itt‘.#.iiti-tt&O.#chboc‘.ﬂ.ttivtv‘vQtittttit'.tbt.ttt.tot
e »/
/¢ Build ancestors for already built and linked leaves »/
/¢ This simultaneously builds the complex X' of gener— ¢/
s+ alized n-calls and builds the carrier blocks far ./
te them. ./
I* M. White ./
/e ./

5,694,534

/‘.'t."l‘.""i"*t.‘b-‘i".“lO“‘I"“.#.O‘*..Q*l.#.“/

#include (stdic.h}
#include {ctype.h}
fincluge (rms.h?

#include "[sources.includeldio.n”
#include “Csources.includeldefs.h”
#include “I[sources.includelcarrier.n”
#include “[sources.includelcarrext.h”

mainiargc. argv)

int srgect
char ®argvil:
<

struct carrier ¢cy, scarry(MAXCARRY. sbhuildcarr ()i
char ansCB21. *self25). pltrs
int contin. statusi

FGB cyfcbsi

double xmin. xmax. ymin, ymaxs
long seed. max2:
int minxs miny. maxx,» maxy. count}
int i, j« ¥d. rtnl

char fnamel@93.
shart carridi

“malloci)s
/» currant carrier 1d s/

printf{"Carrier construction\nin)3
carryl@] = malloc(sizeof(struct carrieriis

status = dopen{kcytch, “carrier.dat™. (MODE_WRITE | MODE_EXCLUMG

if (status) {

fprint f (st dere. "+s ERROR dopen status %P4X\n", status)y

exitistatus)?

r

status = kread(kcyfcb. carry(d1, sizeof(struct carrier). (32}

if (status) <

$print f (stderr.®+s ERROR kread statu

exit(status)i

¥

carrid = carry(®)-dcy_id;
print¢é{"There are %d leat carriers\n®, carrid)s

Fe)
s read a few 1In
./

for (i=ls i(MAXCARR: i++)

carryfil] = NULL:
for C(i=25 (iC(MAXMEM+2) && (i (=carry(B8l=)Cy_idrl ++i) {

/4 initialize &/

e XPaX\n". status):

carryli) = malloc(sizeof(struct carrier))s

status

kraad(&cyfcb, carryCil. sizmofistruct carrier). B);

1§ (status) (
$printf (stoerr, "s¢ ERROR kread status %P4X\n", status)s

++carridd

exit (status)s

/v point to next =/

@oas

5,694,534

10-20/87 MON 13:07 FAX 415 382 2928
FDM&L @ose
_DuUA@: [MARV. PATENTIBU JANC.Ci1 Sheet 2 of 2 Sage B2

carrid = ancestorsi{carry: carrid. kCyfcb)?

carryLl] = carryfcarrid-133 /¢ point to eldest »/

for ti=13 itcarrid: ++1) £
writecarr (carry. i. &cyfcbls

3

printf("Done\n*) 3

status = orclose({kcyfecb)s

1 (status) (
fprint f{stderr,“s* ERROR dclose status %@aX\n". status);
exit (atatus)?

5,694,534
91

92

@oa7

10-20/87 MON 13:07 FAX 413 382 2928 FDM&L
_DUAS: CMARV.PATENT. CESTOR.Ci1 Sheet 1 of 7 age B3
/ARUSEISRPAP IS IS EINRTEPNSSALREAPERNCS NES RN N SOAR S S S S b SR/
7o o f
/* Conmpute carrier tree by atarting with children and s/
/¢ creating parents, grandparents. etc. -/
43 w/
/e B. White ./
/. ./

FAL PRI LTI 2R T2 TR I T R Y I 2 I Py Py Y A IR P YT YT Y T V)
#include (stdin.h)

#include (rms.h)

#include “(spurces.includelidio.h”

finclude "[sources.includelcarrier.n"

/* ./
/OSSR SREA SRS EI RN ISP E SRS LSRN PERES IS RINERIORR SR e/
/- ./

int windosz(cy)
struct carrier scys

<
int n, dx, dys
dx = cy~lcy_wnduwll]l — cy-)cy_wnowlBl:
dy = cy=-icy_wndwl(3] — cy=-)cy_wndw(2]s
if (dx) dy}
n = dxt
else
n = dys
n)= Cy-)Ccy_senerals
returntn’i
b
’e ' ./
addd LI I I IL L T I Ty T T Y L T T T T LY Y T T T 1T
/* ./
/% Percent overlap of windows ./

int windovlp(cyl. cy2)
struct carriear scyl, scy2l
{
int s xmine xmax, ymin, ymaxs
double dx. dy. als a2, small: aovlp}
/% minimum x for averlap e/
if (eyl-)cy_wndwl8l) cy2-)cy_wndwlgl) .
xmin = cyl-lcy_wndwl@l3
else
xmin = cy2-icy_ wndwl@l3:
/% manimum x for overlap ¢/
if (cyl=jcy _wnowCll) cy2-)cy_wndwfl1)
xmax = cyZ2-lcy_wndwl1)}

else
“max = cyl-)cy _wndwills
i
* Check for no overlap
L4

if (xmin)= =zmax)
return(®) §

/* minimum y for overlap #/

if teyl=lcy_wndwl2l ? cy2-)cy_wnowl2l)
ymin = cyl=)cy_wndwl2J3

else
ymin = cy2=icy_wndwl2]3

/% maximum y for overlap s/

5,694,534
93

94

@038

struct chn_dat ech;

struct carrier scyc,

struct two_dat stus
unsigned char topclss

short off. offz,

int 1, {» k&
double best.

dist2:

10/20/97 MON 13:07 FAX 41% 2382 22§ FDM&L
— _DUQ':[ﬂRRV.PATENTJHNCESTOR.CE1 Sheet 2 of 7 Page B84
1f leyl=)cy_wnowl31) cy2=-rcy_wndwWl3)
- ymax = cy2=)cy_wndwl31}
alse
ymax = cyl-)cy_endwl333
-~ /»
» Check for no overlap
n/
- if (ymin)= ymax)
return(@s
/.
— » Calculate overlap ared
«/
dx = xmax — xmin3
— dy = ymax - ymins
aovip = dx » dys
.
— »« Calculate areas of each carriaes
./
dx = cyl=cy_wndwl1] - cyl=lcy_wndwl®l:
- dy = cyl-lcy_wndw[3] - cyl-lcy_wndwl2ls
al = dx * dy}
Ox ® cyz-)Cy_wndw(1l - cy2-}cy_nnduwl@1;
- dy = cy2-icy_wndw[3] - cyz-rcy_wndwl21s
az = dx & dyi
1€ (a1 ¢ a2)
- small = als
else
small = a2;
~ /-
¢« Return percent averlap
s
- if (small) &.9)
n = 10890 * (aovlp / small)s
else
L n = 18603
raturnindi
3
P /* ./
/‘*‘0."‘0Ottottnttttot.t#.!0.#t!tttltv"‘l'l".tttG“tt’/
/ «/
RS /% Find sibling for current children - look across bdyss/
/¢ (= threshclass for sibling nearest (xc»yc) ./
/e ./
- int findsib(cyps ncy: cylist, usedcyr xc. ycr» cyfcb. age. score)
struct carrier *cyp. %cylistlli
int ncys
~ char susedcy. eagei /e flag marking used carriers %/
long xt, yc! /8 center of parent s/
FCB scyfcbi
- int escores /* return evaluation scare »/
{

*oyxy *Cyzd

offch.

XC2»

/% highest class encountered */
cand(1@81. ovlpl1@#d]., ncand. n, wmoats

yc2i

95

107207897 MON 13:07 FAX 413 1682 208238

_DUAS: TMARV.PATENT)F TSSTOR.Cil

i = 83
best = 13
ncand = @3

5,694,534

FDMEL

Sheet 3 of 7 »age B85

I
¢ Find neighbor across bdy with most overlap. Bias score with classif
=/
for loff2=cyp=)Cy_hd2i off2)@: off2stw-)tw_next) {
7+ scan through all children »/
tw = {(char *)cyp + off2;
k = tuw=itw_carry;
rollinicylists k» ncys cyfcb, agel:
cyx = cylist[kl:
if (cyx—=)cy_id !'= k)
printf(“sss raollin error 45d should be 43d\n".
cyu=dcy_3ids ki
far (offch=cyx-~)cy_hdchn: affch)@3 offchmch—ich_next) {
ch = t(char s)cyx + offchi
i = ch-)ch_other:
if¥ (‘usedcyfid)
for (n=@; (n{ncand)kk(candln]!=L); ++n) 1
if tn == ncand) {
/% new candidate s/
candlnl = i
rollin(cylists i+ ncy. cyfcb, agels
cyz = cylistii1ls
ovlpin) = windovlp(cy2z, cyp}s
switch (slamclassich-Ich_class)! <
rase '2': ovipLnl += |POPP: break;
case 9! oviplnl += 99085 break:
case '3 oviplnl) += 3000 breaks
case '4': ovipln) += 48083 breaks
case '3'! ovliplnl += 38083 break:;
case '2': oviplnl +~ 20003 breaki
case '1'! ovlpinl += 10985 bresak:
default: §
>
++ncands
)
}
¥ =
3
J = most = @3
for (n=Pt nincandi ++n) {
if tovlpCnl) mpst) <
§] = candlnli
most = Qvipinli
>
b3
it (j = @)
sacare © masts
returnij’s
3
7% ./
/OSSO APIS PRI ST ABIR SR RS SNINSLEPSSOATE RSN IISPPRIRGELISSOS/
I -/
/= Parent asoeba program — assimilate carriers at a w/
/% level (siblings) and use their boundaries to create »/
/e the parent. ./

doss

97

5,694,534
98

18/20/87 MON 13:0 3

8 FAX 415 382 2928 FDM&L @040
< _DUAG: CMARV.PATENTIAWCESTOR.C;1 Sheet 4 of 7 Jage B§

/w ./
-~ struct carrier tparamaeb(seed: cylist, ncy: usedcy. seency-: level. cyfcb, age)

{4

(1

(U T € T G T T A (R ¥ {4

(4

int seed, ncy.
lavall

struct carrier

char susedcy.

FCB scy¥fcbs

{

struct

struct
struct

/e subscripts into cylist =/
/e level of ganeralization ¥/
scylisti s /¢ 1iat of carriers */

sGEencys sages /e flags »/

carrier *Cyp. /+ parent +/

»CYCr fe child &7/

cyhold: /¢ backup to cover for overflow &/
chn_dat #cht
two_dat etds

short off; unusell@@], junuset
unsigned char threshcls: /9 threshold ciass »/

lonyg
int i
/.

xC» y&3 /% center point #/
j+ 0y szthresh, score:. markplc, threshscr. SiZROK» WNOWOK ?

¢ Initialize parent with child

./

szthresh = 92146t /% limit size to produce ¢ &h cassette blks ¥/
cyp = nawcarr ()i

cyp=icy_general = levels

cyp~lcy_id = ncys

rollin(cylist. seed, ncy, cyfcb, age)l

cyc = cylistiseedls

it leyc-Jcy_id != seped)

printf("w»e rollin error %3d should be XSd\n”:
cyc=rcy_id. sesd)i

xXC ® (Cyc—)cy_wndwl@) + cyc-lcy_wndwlll) /7 23
yc = (cyc~dcy_wndwill + cyc=)lcy _wnaw(21) 7/ 2%
i = gand;

/»

+*+ Compute threshold class for boundary

%/

seitch (level) {

>

*S5'3 break:
14*3 breaki
"3': break: S

case B: threshels
case 1% threshcls
case 2: threshcls
case 3: threshcls 123 breaki
case 4. threshcls "1t break!
default: threshcls = *\@';

threshscr = 1200004 /% threshold for score from findsib &/

/9

s Keep expanding the family until parent is full

s/

markplc = 1% /% flag to mark place &/

n= 8

/¢ number Of children e/

while feyc'=NULLY

1¥ (markple) <
cyhold = scypi /% VAX 7 VMS assign o/

junuse = B3 /% subscript into unuse array %/
b 4
cyparent (cyp. cyc, threshcls):
neds

if t(sizeok=(sizecarr(cyp) (szthresh) &
(wndwok= (WindOaz (Cyp)) cyp~)Cy_genaral) < WNDWMAX): |

5,694,534
99 100

10/20/97 MON 13:08 FAX 415 382 2928 FDM&L dos1
v . A T—— ‘
_DUAS: [MARV.PATENT JANCEST Cst Sheet 5 of 7 rage 87
(n==1) 1}{
usedcylil = 1§
unuseliunuse++l = 13 /» remember incase revert to prier »/

/% mark adjacent siblings as sesn ./
for (of fscyc-icy_hdchnt offldi offmch-)ch_next) <
ch = {char #)cyc + offi
i{f (ch=)ch_other) 8) (
seencylch-)ch_otherl = 13
¥

3
i = findsib(cyp: ncy. cylist, usedcy,
xC»yc» Cyfcb. age: &scorels
if (3) M £
rollintcylist. i. ncy: cyfch, agel?
cyc = cylistCili
if (cyc-ley_1id i{= {)
printf("s2s rollin error Z5d should e %ASd\n".
cyc~icy_16s 1)}
markplc = iscore (= threshscr);
score = (score/1P93) * 1808 + 9998
1§ (threshscr) scora) threshscr = scorel

b
else
cyc = NULLS
}
else {
/¢ backup 1 stage »/
scyp = cyhold: 7% VAX / VNS assign &/
for (j=8:; j(junuses j++) {
usedcylunuseljl] = B3 /% not used after all »/
b
Cyc = NULLS
>
>
/e
s List children kept
"/
n = @&
printf(*Carrier X46d has 24d bytas and childrenzi\nY,
cyp-)cy_id. sizecarr(cypl)i)
for (offmscyp-)cy_hd2: (offiB)t affstd-)tw_next) {
td = (struct two_dat *} ((char ®)cyp + aff)}
Nn++y
printf(™ %50". abs(td=-Itw_1d}}i
if ((n%1@) == @) printf("\n"}s:
b4
printf("\n");
if C('sizeaok) printf("Carrier %6d hit byta barrierin®. cyp-dcy_id}}
14 Clwndwok) printé{"Carrier %&d hit window\n", cyp-icy_id)s
cylistineyl = cypl
agelncy] = 93
ncy*+t
/.
¢ keap number of carriers in memory constant - free oldest
LT3

free(swapoldicylist. ncy, cyfcb, agei)s
returnincy) s

5,694,534

10/20-97 MON 13:08
FAX 415 362 2028 FDM&L @os2
_DUAR; EMARV. PATENTJANCESTOR.C: 4 Sheeat 6 of 7 age 88
+
‘. s/
"'.tt"‘l‘tt.lit‘t'l.“‘i.-'.l.-Uttttn""t‘t.lll"l‘.'!l
™ ./

.nt ancestors(cylist, ncy, cyfch)
itruct carrier ecylistils

Nt ncyd

CP scyfcbi

char susedcy, %SQENcCYy: *age’
long wWingowLMAXCARRIC41}
int first, neaxt, i. k. seed. level; bdysplit()s
printf("ancestors for Z4d carrlers \n". ncy):
usedcy = malloc (MAXCARR $
weancy = malloc (MAXCARR) 3
ape = malloc (MAXCARR) 3
for (i=fs I ((MAXCARR); ++1)
/= initialize flags e/
usedeyli] = smencylil = &?
agelil = 13
>

¥ mark guter boundary as used and save 1 for dascriptor
-/

usedcyiB] = usedcyl1] = 13

next = ncyt

first = 25

level = @1 /¢ level of generalization &/

while (((next~first) } 1) &k (ncy ¢ MAXCARR)? (
++ievell

seed = firsts
for (i=firsts i{nexts ++i}
seancylil = 25 7+ reset the adjacency flags ¢/
while ((seed) @) L& (ncy (MAXCARR)) {
ncy = paramoeb (seed> cylist. ncy.
usedcy: seency, level, cyfcb. age):
rollinlcylist. ncy-1s ncy» cyfcb, ageli
windowincy—13083 = cylistCncy-11-)cy wndwl&13
windowlncy-11[1] = cylistincy—-1]1-)cy_witdwl11:
windowLnecy—-13[21 = cylistincy—-11-)Cy_wndwl23s
windowlncy-11£3]1 = cylistincy-11-)cy_wndwl[3]}
/¢ split chains {nto bdy and interigr &/
while (bdyspliticylistincy-1322 3§ /% kesp splitting until ok
for (i=nexts ti{ncy—-L% ++i) {
if (overlap(windowIncy—-11., window{11}? €
rollin{cylist, ncy—-1» ncy. cyfcb, agei
rollinicylist, i, ncy. cyfch. age?s
linksib(cylistincy—11. cylistiil}?
>
¥
saed = @}
for timfirst! (seed==@)u&(i(next): ++i) {
if (‘usedcyl[i] &k seency[il}
sacd = 1%
}
14 (sead==@)
printf{“No more adjacent carriers\n”?;
14 (seed == @)

5,694,534
103 104

10/20/97 MON 13:08 FAX 415 382 2023 FDMEL

DUAS: [MARV, PATENT JANCE! R.Ct1 cheet 7 of 7 Page 89
‘ print*("End of carriers at level #Zovn"s
jevellt

>
printf("End of family first= Xd next= 2d\n", first. nextli
first = next?
next = ncys
for (i=23 itncy! 14¢)
writecarr (Cylist, iv cyfch)? /% claar buffers ¢/

>
14 (ncy)= MAXCARR)
7 fprintfistderr,“»* Number of carriers %¢ resched max Xoin®.
ncy: MAXCARRI S
raturnincy) s ’

5,694,534
105 106

1a/20/97 MON 13:08 FAX 413 382 2828 FDN&L @

044
USRS

nd_pres.c Sheet 1 of 1 Page 90

eal /iii*ii*"i".’&i*iiiﬁ&&*}*i*iif&lfﬁi&ifi*l**!*&liiillli’f#*i#&ilibi*iif

raz * . b

223 * -

a4 - FND_PRTS.C Bewrge Loughmiller -

2’s = -

286 - -

ae7 - This function stores a pointer toO the parent of the carrrier. "

|es * The parent carrier is always the first in the list. The list of »

.. % carrier pointers is terminated by & null bafore returning. Since =

212 4 this routine is called by the Qeneral search routine fnd_blks, it +

a1l + returns a zeroc to keep this carrier from being included in the -

a1z ¥ fertilization data; i.e., only those carriers which are searched *

@13 * +or siblings ars to be part of the tertilizer. {See the »

@14 %« description aof routine nd blks for mare details. »

215 - -

@14 % 1984 ETAK, Inc. -

217 » -

218 l'*i{*‘l—"-ll.'I'G*G-iI--.Q‘li*'f‘****%&lbl&fi‘{‘..i‘}i*i**l—fi!l}i*f&*i**'i e

D19

220

@2t #include "carnvdef.gel"

B22 #Minclude “carnvdef.ct"

223

324 Fnd_prts(pheadr, cr_ptrs)

@2% struct hd_dat #pheadrs /% address of carriesr header .

226 struct cr_dat #cr_ptrs{l; /% array of carrier pointers *

227 <

azae scr _ptrs++ = (char #) pheadr =+ pheadr—>hd_offcrj

223 return(ecr_ptre = @);

238

5,694,534
107 108

10/20/87 MON 12:00 FAX 415 382 2928 FDM&L idoas

fnd_kids.c

Sheet 1 of 4 Page 91
2921 /*i*i"‘if’ii&iii{*l&l.*i'*i'{*iIf**i'i*i‘Ili'*‘*ifb&iii.lii’.i**d&0'*1*
B2A2 * -
2R3 - A
aves ~ FND_KIDS.C George Loughmiller »
1 - "
20Rs *]
w7 * Thig function searches a carrier finding the children which are <
3003 % in the data base region. Ffor each kid found, a pointer to that -
20e9 * carrier is returned in the array cr_ptes. The data base region -
213 * is a rectangle definad by a center position and offsets from the -
2011 * centar to the four sides. A carrier 18 included in the returned *
p012 s list 1f any of its segments is contained within or intersects the =
2813 *+ rmctangular region. The status tpending, included, or encluded! -
2214 s of each carrier i3 initializZed and updated as the swach of -
815 + sagments proceeds such that segments bounding carriers no longer -
ale + pending can be bypassed. To handle the situaticon where the data -
217 4 base region is completely withim the interior of one carrier *
p0i8 « (i.@.,y the carrier needs to be included, but all of its seqments *
W1V % are outside of the data base region), a count of the number o+ -
2R # intersections with a semi-infinite line along the left edge of ~
21 s+ the data base region is maintained for esch carrier until a *
»azz » msegment hase bmen found inside of the data base region. If at the =
2223 + end of the sesarch a segment has not been found within the data -
24 %+ base region, the count for each carrier is checlked until a i
32T s carrier with an odd number of intersections is found and a single =
B2e + painter to that carrier 1s returned. The list of carriar -
w27 * pointers is terminated by a null before returning. Since thas -
2228 + routine is called by the general search routinae fnd_blks, 1t .
29 » returns a zerc to kaep this carrier from being included in the *
3 + fertilization data; i.e., only those carriers which are searched -
31 s for siblings are to be part of the fertilizer. (See the -
32 « description of routine fnd_blks for more details.) -
133 - ~
ws4 &« 1984 ETAK, Inc. .
B35 - -
A3L HU A ERSERE prypaepepepapmpaprar e ¥ ATERE L L 4 A 4 S Sl i g Y T 2 2 2 0 LS bR
w037
36
1339 #include "carnvdef.ct”
124@ #include “carnvdef.gel"”
1041 #Winclude "errdefs.c’
sae2
143 fnd_kids(pheadr, cr_ptrs)
Pag struct hd_dat =pheadr; /% address of carrier ®/
@85 struct cr_dat scr_ptrsil; /% array of carrier pointers %/
mae <
a7 extern struct position db_pos} /8% center of db region #/
W40 extern int blk_fnd; /% block found flag »/
a9 extern int db_left; /4% left boundary of ragion ¥
T awtern int db_righty /% right boundary of region "5
Wws1 extarn int db_botj /% battom boundary of region */
s2 extarn int db_topj /¢ top boundary of region «/
|53 extarn int err_stat) /% mrror HessSage number »/
nse entarn char erc_msglly /& error message %/

RS55 extern char #emsgsl(l; /o array of arror messages L

5,694,534
109 119

10/20/97 MON 13:00 FAX 418 382 2928 FDM&L @o4e
fnd_kids.c Sheet 2 of 4 Page 92
2DSé
BaAs7 struct bl_dat blocksIMAX_ELKS]3 /% status of blocks */
o258 struct bd_dat #*bndy: /% address of boumgary array =/
2859 struct bd_dat #*pbndy; /% pointer to aext boundary
2060 struct bd_dat spend_bd4; /% pointer to last boundary */
.l 1Y] struct st _dat »streetss /% address of street array »/
MBL2 struct st_dat wspstreet; /% pointer to next street ¥/
3963 struct st _dat spend_st; /% pointer to last street &/
20448 struct cr_dat ®carriers; /% adoress of carrier array %/
MAeS struct cr _dat #pcarrier; /e pointer to next carrier #/
s struct nd_dat *nodes; /% address of nodes array #*/
1067 struct nd_dat spnodes /% pointer to next node #/
1248 struct nd_dat *pesnd_nd; /% pointer to last node #/
w6 struct bl_dat #pleft; /# painter to left block +/
D70 struct bl _dat wpright; /% pointer to right block */
3271 int icarrier; /% index to carrier array #/
872 int ncarrier; /% number of =mub carriers #/
w73 int nblk_pnd; /% number of pending blocks #/
@74 int nblk_rtng /% number of blocks found «/
107% int disty /% distance of xing above box =,
ma7s int x1; /% w value of “from” node «/
" rard int vyis /% y value of "from" node =/
m7a int x2p 2% x value of "to" naode »/
279 int y2i /% y valus of "to" node #/
aca
081 if ((ncarrier = pheadr->hd_ncary) >»= MAX_BLKS?) <
1as2 Sprint¥ ierr_msag, emsgslLerr_stat = EM_MXBLS]);
12683 returniscr _ptrs = @),
084 3
12835 for licarrier = 1 icarrier <= ncarrier; icarrier++)
186 blockslicarrierl.bl_stat = @3
@87 blockef@].bl _stat = blockslll.kpl_stat = 25
1217 nblk_pnd = ncarrier -~ 1;
as9 pbndy = bndy = (char %) pheadr + pheadr->hd_of¥fbd;
a9 pend_bd = phndy—— + pheadr—>hd_nbndy —
D71 while (+4+pbndy < pend_bd) ¢
292 if (M((pleft = kblocks[(int} (pbndy—>bd_lest)d)—-rbl_ stat): <
233 pleft-—>hl_stat = 2y
294 nblk_pnd——;
"~ >
2%6 ¥
@7 pcarrier = carriers = (char #) pheadr + pheadr->nd_o¥fcr;
ays for (icarrier = 1; icarrier <= pcarrier &k nblk_pnd; icarrier++) {
a9y i¥f ('blockslicarrier).bl_stat) {
162 if ((int) (pcarrier->cr_sxmax — db_pos.x) < db_left !
101 lint) (pcarriar->cr_nwmin = db_pos.x) > db _right !
182 tint) (pcarrier->cr_ymax - db_pos.y) < db_bot !
103 (int) (pcarrier->cr_ymin ~ db_pos.y) > db_top} (
1@4 blockslicarrierl.bl_stat = 2;
1@5 nbik_prd-—g
106 3
187 else
18 blockslicarrierl.bl _nxing = &3
1@a9 >

118 pCarrier++;

5,694,534

111 112
10-20/07 MON 13:00 FAX 415 362 2828 FDMEL @047
-nd_ kide.C sheet 3 of 4 Page 93
3131 >
112 if (‘nblk_pna) return{ecr_ptrs = as
13 blk_fnd = @
1114 pstreet = streets = (char #) phesdr + phuadr—)hd‘piisty
1S pend_st = pstreet—- + phlldr—)hd_nstrt[
e nodes = {(char #) pheadr + phnadr->hd~pf¥nd|
W17 while (+rpstrest < pend_st &% nblk_pnd) £
18 pnode = (char &) nodes + pstro.t—)st_pffncn
niy pend_nd = pnode + pstreet—>at_ndcnty
1120 x2 = pnode—>1¥_x - db_pos.x;
1121 ve = pnade—~>1f_y — db_pas. ¥l
232 whila (++pnode < pend_nd &k nblk_pnd) {
123 xl = x23
3124 Lyl = y2y
31128 x2 = pnode->1F¢_» - db_pos.x)
12é © y2 = pnode—>1¥_y - db_pos. vy
w27 if (blocksl(int) lpnode->nd*3e+t)3.b1_§tat Bl
1128 plocksi tint) (pnedt—)nd_right)J.bl_;tat) continue
A2 pleft = &bleocksl tint) lpnodl-)nd_l.#t!];
1130 pright = tblocksl (int) (pnoda-)nd_right)):
231 i¢ t(blk_*nd) <
H1T2 if (iseg_outixl, yl, %2, y21) £
N335 if (ipleft—>bl_stat) {
3154 pieft—~>bl_stat = 1)
TS nblk_pnd-—§
2136 >
3137 it (ipright—>bl_stat) ¢
338 priqht—)bl_’tat - 1
AJFR nbl k_pnd——;
J14a ¥ .
1141 3 -
1142 b
3143 else {
aiaa ewitch iseg _outixl,y vl, x2, y2, hdistl)) (
1145 case @:
1146 blk_¥nd = 13
raz if (‘pleft=>bl_stat) (
248 pleft->bl _stat = 13
3149 nbl k_pnd——;3
NSO 3
1151 14 (!pright—)hlmst-t) ¢
am2 pright=->bl _stat = 13
KR -1 nbl k _pnd——3
54 3
f1ES breaik;
3156 case 1:
2157 if (x2 > db_left) &
IS8 pleft->bl_nxing++;
1SS pright=>bl_nxing++;
1160 ?
2161 brealk
5162 case 2t
a1 63 if (x1 > ob_left)
21464 pleft=>bl _nxing++;

AlaS pright—>bl_pxing++;

5,694,534

113 114
10/20/87 MON 13:10 FAX 415 3682 2928 FDMEL doas
fnd_kids.c Sheet 4 of 4 Page 94
» @aiss >
2167 break;
@168 case 3
] B1&9 Pleft—>bl _nxirg++y
@178 pright=>b1 _nxing++;
174 breaiy
» 2172 M
2173 X
B174 b2
» B17% }
B176 fblk_rtn = @
ai177 PCarrier = carriersg
4 ai7B if (blk_+$nd) <
2179 for ticarrier = 1§ icarrier <= ncarrier; icarrier+e+) ¢ -
2189 if (blocksticlr!’ier].bl._st.t ma= 1) ¥
' o161 *cr_ptrs++ = pcarriery ¥
2182 nblk_rtn++g -
a183 > .
' a184 PCarrier+s;
L e18% 3
' Q1es >
' e187 alse ¢ :
I @188 ’ for (icarrier = 1} icarrier <= ncarrier; icarrier++) {
i a1a9 if (!'blockslicarrierl.bl_stat st : ;
' 190 blnckl[icarrier].bl_nxing %2) «
A19) *or_ptrest++ = pcarrier;
b 8192 nblk_rtn = 1;
¢ @19% braaks;
. D194 ¥
i 2195 pPCarrier++;
¢ @19 3
@197 H
2198 return(scr_ptrs =)

' a199

10/20/97 MON 13:

o _sibs.c

24

K

115

5,694,534

116

10 FAX 415 362 2928 FDMAL @oas
Sheet 1 of 4 Page 95
TRy e ‘*{lQQ*&i}*b&&li*i&i*i{i.***i'bi&*l}#‘Gi*l*&*i*

L
A
b
E

adge of
wegment

S e ERE AR EE AR R ERETEARINES S EEEREEE R ER *x

3BTRS B 0 2 AU T R

end of the search,
a null, and i¥ a boundary segment has
a one is returned indica
Ootherwise,

base region,
is ta be included.
I the count is an odd AumMber,
incloae the data base region:

that this carrier is to be included.
must be completly exterior to the data

is returned indicating that this carrie

This function searches a
in the data base region.
that carrier is returne
status of this carrier
data base region is & rec
offsets from the center to
in the returned list if it
poundary segment which is can
rectangular region. In
edge of the data base is con
rectangular data base region, the
swt. The astatus
is initialized and updated as t
proceads such that streets boun
can be bypassed._ To handle the sit
region is completely within the int
thie cerrier needs ta be included,
segments are outsid
pumber of intersections with a se
the data base region is m

1984 ETAK, Inc.

d in the array

(pending, included,

FND_BI18S.C Beorge Loughmiller

carrier finding the siblings which are
For each sibling found, & pointer to
cr_ptrs. In addition, the
(included or excluded) is returned, The
tangle defined by & center position and
the four sides. A sibling is included
iw the neighboring carrier along a
tained within or intersects the
addition, i¥ any segment bounding the
tained within or intersects the
"close to edge of map"” flag is
or encluded! of each carrier
He seach of boundary segments

ding carriers no longer pending
uwation where the data base
aricr of this carrier (i.e.,
but all of its boundary
e of the data base region), a count of the
mi—-infinite line along the lett
sintained until a boundary
has besn found inside of the data pase region. At the
the list of carrier pointers is terminated by
been found within the data
ting that this carrier

the intersection count is checked.
this carrier must completly
hence, a one is returned indicating
Otherwise, this carrier
hase regionj hence, & two
r is to be mxcluded.

Y EEEEEEE R E T N R I NI O I B ')

yER YK

#include "carnvdef.ct”
#include “carnvdef.gel™
Ninclude "mrrdefs.c”

fno_sibs (pheadr, cr ptrsl
struct hd_dat #*pheadrs
struct cr_dat #cr_ptrsll:

{
wsxtarn
extern
extern
axtern
extorn

seruct position
int db_left;
int db_rights
int db_botg

int db_topj;

db_pos;

A2 P A A

7 -
/%

/w
z
/.
FE]
/ *

L
*

addrass of carrier header #*/
array of carcier pointers -/

center of db region =/

lett boundary of region *
right boundary o¥ region «/
bottom boundary of region -’
top boundary of region w5

5,694,534
117

118

10-26/97 MON 13:10 FAX 418 362 290238 FDMEL Ihoseo
fnd_sibs.tc Sheet 2 of 4 Page 96
PSS extern ipt bli_fnd: /# block found flag */
eDS7 extern int err statyg /% error message@ number */
eS8 extern unsigned char on_adges /# close to edge of db flag */
2S5y extern char err msqll: /% error message %/
PBsLD attern char #emsgsll3 /4 prray of error messages -/
w61
DPLD struct Gl _dat blocksCMAX _BLKS]1j: /# status of blocks */
QRsS struct bo_gat #bndy: /% address of boundary array ¥/
QDL4E struct bd_dat #*pbndyy /% pointer to next boundary #/
@a6S struct bd_dat #pend_bd; /% pointer te last boundary #/
[] P2¥ Y mtruct st_dat #atreetss /% address of strests array #*/
DT struct st_dat *pstreet; /% pointer to next street */
0468 atruct cr_dat “carriers; /% address v carrier array ®/
@nes srtruct cr_dat #prcarriery 7% painter to next carrier */
aevo struct nd_dat #nodes; /» addresss of nodes array */
a7 struct nd_dat *pnode: /% pointer to next node */
2072 struct bl _dat-spleft; /% pointer to boundary block #/
BT int lcarrier: /% ipgex o carrier array */
Ga74 int ncarrier; /% number of sub carriers #/
nars int nblk_pnd} /% pumber of pending blocks ®/
BA7é int dists: /% distance of ~xing above box #
. e int nxingse /2 xnings with left mdge #*/
an7a int x13 /% % value of "fram" node */
Qave int vig /& y value of "from” node #*/
=] f=]n] int »2:2 /% » value of "to" node #/
nags int w2y /% y value of "to" node =/
ral, 1= 3 1Nt ifmce; /% increment for node ocointer #
AARZ int nnodes: /% pumber of nodes */
2684
aass carriers = ichar #) phaadr + pheadr-ihd_offcry
0066 if (¢int) (carriers-rcr_xmax = db_pos.x) < db left I}
DOB7 tint) (carriers->cr_xmin — db_pos.x) > db_right ||
a8s (int) (carriers—>cr_ymax - db_pos.y) <« db_bot 1]
5% . (int) tearriers=>cr_ymin — db_pos.y) > db_top) <
Qeer »cr _ptre = Q3
2031 return {2 g
ARI2 >
Q93 if ((ncarrier = pheadr->hd_ncary) »= MAX_BLKS) {
Q@94 sprintfl(err_msg, emsgslecrr_stat =~ EM _MXBLS]) s
NDIS scr_ptrs = 0t
ADI& return(l),
A7 >
098 for licarrier = @; icarrier <=a ncarrier; icarriers+)
aDIP blockslicarrierl.bl_stat = 2y
Jg1e@ rbndy = bndy = (char %) pheadr + pheadr—>hd_offbdy
@l pend_bd = pbndy—- + pheadr—>hd_nbndy;
RN b while (++pbndy < pend_bd)
@1@3 blockst {(int) (pbndy—>bd_left)l.bl_stat = @;
dlaa if ('blocksl[@]l.bl_wtat)
alas nblk _pnd = 2¢
2106 else
2107 nblk_pnd = 13 .
Bio8 for licarrier = 2, pcarrier = carriers + 13
2109 icarrier <= ncarriwr; icarrier++, pcarrier++}

©11Qa if (blockslicarrierl.bl_stat)

continue;

5,694,534
119 120

10/20/987 NON 13:11 FAX 415 362 2928 FDM&L

Sheet 3 of 4 Page 97
i¥ (tint) (pcarrimr—>cr _xmax — db_pos.x) < db_left !
tint) (pcarrier—:cr xmin - ab_pos.x) ¥ db_right !
tint) (pcarriec=> >cr_ymax = db_pos.y) © db_bot i}
(int) (pcarrier—>cr_ymin - db_pos.y) > db_top)

blocksficarrierl.bl _stat = 23
el se

nblk_pnd++;
3.
blk_fnd = nring = Qs
strests = (char =) pheadr + pheadr—?hd_o*f:t:
nodes = {(char +} pheadr + gheadr—>hd_offndj
incr = (pheadr->hd_res % @xBF) 7 sizeof (struct nd_dat) :

sizeof {(struct 1+ _datly

pbndy = bndy - 13;

pstrest = streets - 13
while (++pbndy < pend_bd & nblk_pnd) <
petraet ++j

pleft = sblocksl (int) (pbnay=>bd_leftl 1y
prnode = (char *) nodes + pstreat—rst_offnd;
nrhnodes = pstrest->st_npdontg
®x2 = pnage—->1§_x =~ dia_pos.xs
y2 = pnode->1¥_y — db_pos.y:
while (=-nnodes && ' (blk_fnd &% pleft—>bl_stat)) <
pnode = (char %) pnode + incri
xt = x23
Yyl = yZi
x2 = pnode->1+f_x —~ db_pos.i;
y2 = pnode—3l§_y ~ db_pos-y}
switch (seg_outixl, yl, xZ, yZ2, &dist))
case O:
if Cblk_fndr €
nblk_pnd==;
blk_Ffnd = 1}

if (pleft->bl_stat) breaks
if (pbndy—>bd_left) {
nblk_pnd—=;
pleft=>bl_stat = 13
#Cr_ptrs++ = Carriers +
(pbndy=->bd_left - 13
3
wlee if (near_edgixl, yl,
x2, y2, pstreet)) {
nblk_pnd——;
pleét-rbl _stat = 1;
on_edge = 13
3
breaks
case 1:
if 2 > db_left) nxing+e:
break:
case 2t
if (x1 > db_left) nxinge+;
breaks
casa 32

Bos:

i sibs.c

34
37
58
59
’@
71
72
73
74
78
7
77
e
Al
3@

5,694,534
121

10/20/87 MON 13:11 PAX 415 382 2928 FDM&L

Sheet 4 of 4 Page 98

neing++s
braak;

w

2>
b4
scr_ptrs = @
if (blk_*%nd)
return(l);
elue {
1f (nxing “« 2)
return(l);
el se
return(2);

122

@osz

5,694,534

123

We claim:

1. Apparatus storing a representation of a topological
structure having topological features, comprising:

a) a data storage medium; and

b) a digital data base stored on said data storage medium,

said digital data base including a plurality of carrier
blocks of data representing the topological features at a
given level of detail, said data of each one of said
carrier blocks being a representation of a carrier which
is a closed set including in its interior a given topo-
logical object, and wherein said closed set is a smallest
closed set and is a sub-complex X, of a topological
complex X, the sub-complex X, having a set of n-cells,
where 0=n<= the dimension of the topological structure
and the totality of said plurality of carrier blocks covers
the topological complex X.

2. Apparatus, according to claim 1, wherein the areal
coverage of the features of one portion of the topological
structure provided by one said sub-complex X; of one said
catrier block may be larger than the areal coverage of the
features of another portion of the topological structure
provided by another sub-complex X;; of another said carrier
block for i#j.

3. Apparatus, according to claim 2, wherein the size of
each said carrier block of data is substantially the same as
the size of each other said carrier block of data.

4. Apparatus, according to claim 3, wherein said data of
each one of said carrier blocks are stored in bytes, and
wherein the number of bytes in each said carrier block is
substantially the same to provide said substantially the same
size of carrier blocks.

5. Apparatus, accarding to claim 1, wherein said sub-
complex X; has an interior which is disjoint from the interior
of another sub-complex X;; of said complex X for i#j, and
wherein said sub-complcxes X, and X; are topologically
mutually adjacent having a common border.

6. Apparatus, according to claim 1, wherein n=0, 1 and 2.

7. Apparatus, according to claim 1, wherein the topologi-
cal structure is a geographical area and wherein said digital
data base corresponds to a map of the geographical area and
said sub-complex. X, represents a certain portion of the
geographical area.

8. Apparatus, according to claim 1, wherein adjacent
carriers have a common boundary and only one of the carrier
blocks representing one of the adjacent carriers has data
identifying said boundary.

9. A method of building a digital data base representing a
given topological structure, using a programmed computer,
the digital data base having first and second levels of carrier
blocks of data that are topologically equivalent, each of said
carrier blocks of said first level having a topological sub-
complex X; corresponding to an element A, of a partition P
at the first level, each said sub-complex X; having n-celis,
where 0=0, 1, 2 . . . , and the 2-cells ¢, of the sub-complex
X, being mutually adjacent, and where the totality of the
carrier blocks of data of the first level constitute a topologi-
cal complex X, and the totality of the carrier blocks of data
of the second level constitute a topological complex X,
comprising the steps of:

a) providing each said sub-complex X, on a data storage

medium;

b) for each said sub-complex X, fusing all the 2-cells c

in one said sub-complex X to form a single 2-cell ¢

c) identifying a l-complcx of 1-cells ¢, on the boundary

of the single 2—oclls c',; and the 0—cc]ls ¢®; bounding
those 1- cc]ls c',, where those 0—cells o mcxdent tot
1-cells c!; are cssentm.l 0-cells ¢, where t=2;

s

15

20

25

35

45

55

65

124

d) constructmg connected chains of 1-cells c'; so that each
chain ¢!, is bounded by the essential 0-cells ®,, where
these chams of l-cells c!; are common to adjacent
sub-complexes X; or on t.hc boundary of the entire
complex X; :

¢) fusing each chain of 1-cells c; to form a 1-cell ¢*;; and

f) for each essential O-cell c°, crcanng a chain of O-cells
%, having a smglc 0O-cell and mapping this chain mto
thc 0O-cell ¢, as a oopy of the esscnml O-cell %,
whereby the n-oe]ls c? , and ¢°,, constitute the
topological complex X‘.

10. A method, according to claim 9, wherein the step of
fusing each chain of 1-cells c; compnses reducing the
geometrical complexity of the l-cells c'!

11. A method, according to claim 190, wherein the step of
reducing comprises using a straightening algorithm.

12. A method, according to claim 9, further comprising
iterating the steps a)—f) until a resulting topological complex
X", X" ... does not exceed a given complexity threshold.

13. A method, according to claim 12, wherein the step of
iterating comprises the steps of:

a) initially providing the complex X'

b) creating a fused complex X" using the steps a)—€) of

claim 9 and then storing the fused complex X";

c) determining if the stored complex X" exceeds a given
complexity threshold; and

d) if the given complexity threshold is exceeded by the
complex X", setting X" as the initial complex and
returning to step b) of claim 12.

14. A method of building a digital data base, representing

a given topological structure, using a programmed
computer, the digital data base correspondmg to a complex
X having a plurality of elements A={c? } of a partition P and
a plurality of n-cells corresponding to topological features of
the topological structure, wherein n=0, 1, 2, comprising the
steps of:

a) initializing a counter k;

b) selecting an arbitrary 2-cell c? " in the complex X not
already included in a prior element A, in the partition P;

¢) incrementing the counter k and initializing a register A,,
storing element A, to store only the selected 2-cell c?)
of a sub-complex X,;

d) adding all 1-cells and O-cells incident to the selected
2-cells ¢ to provide a sub-complex X, being a topo-
logical closed set;

e) selecting another 2-cell ¢* in the complex X not
already included in a prior element A; and adjacent a
2-cell ¢?; in the sub-complex X,;

f) testing whether adding the 2-cell c’, selected in step €)
and all l-cells and O-cells incident thereto to the
sub-complex X, would cause the sub-complex X, to
exceed a given threshold of complexity;

g) going to step h) or step i) if the test of step f) does not
or does show, respectively, the given threshold being
exceeded or not being exceeded;

h) adding the 2-cell ¢?; tested in step f) to register A, and
adjoining this 2-cell ¢2, and all its incident 1-cells and
0-cells to keep the sub-complex X, a closed set;

i) returning to step e);

j) since element A, and sub-complex X, are complete,
adding element A, to a register P storing the partition
P and storing the sub-complex X,; and

k) going to step b) if there remains any 2-cell c"'j in some
element A,

5,694,534

125

1S. A method of searching a digital data base using a
programmed computer, the digital data base having a hier-
archy of levels of carrier blocks of data, each level in the
hierarchy, constituting topological complexes X, X', X". ..,
each of the complexes X, X', X" . . . containing successively
more generalized information and the complex containing
the most generalized information being the root, each of the
complexes X, X', X" . . . constituting n-cells, where n=0, 1,
2 ... and the digital data base representing a topological
structure, comprising the steps of:

a) initializing a first list of selected cells and a second list

of current carrier blocks;

b) setting the second list to be the root;

c) setting the current hierarchical level to be the root;

d) selecting from the second list of current carrier blocks,
the O-cells, 1-cells and 2-cells that fall within a speci-
fied range from a point;

¢) exiting if the current hierarchical level is 0;

f) replacing the second list of current carrier blocks with
another list containing one carrier block for each 2-cell
at the current level in the first list of selected -cells,
whereby each said one carrier block of said other list is
at the next level of the hierarchy;

g) decrementing the current level; and

h) returning to step d).

16. A method of searching a digital data base using a
programmed computer, the digital date base having a plu-
rality of carrier blocks at a given level constituting a
topological complex, each of the carrier blocks containing
topological n-cells, comprising the steps of:

a) initializing a first list of selected n-cells and a second

list of current carrier blocks;

b) setting the second list of current carrier blocks to be a
given carrier block;

c) selecting from the second list of current carrier blocks
the n-cells that fall within a given range of a point;

d) exiting if no n-cells selected in step c) is on a boundary
of a carrier corresponding to the carrier block to output
the first list of selected n-cells;

¢) for each n-cell in the first list, if the selected n-cell of
step ¢) is on the boundary of a carrier and another
carrier block corresponding to an adjacent carrier is not
in the second list, adding that other carrier block to the
second list; and

f) returning to step c).

17. A method of searching a digital data base using a
programmed computer, the digital data base having a hier-
archy of carrier blocks and each level in the hierarchy of
carrier blocks of data constituting topological complexes X,
X, X"..., each of the complexes containing successively
more generalized information and the complex containing
the most generalized information being the root, each of the
complexes constituting topological n-cells, the method
being searching from a lesser detailed hierarchical level to
the root, comprising the steps of:

10

15

20

25

30

3

Ly

40

45

50

55

126

a) injtializing a first list of selected cells and a second list
of current carrier blocks;

b) setting the second list of current carrier blocks to a
given carrier block;

c) selecting from the second list of current carrier blocks
the n-cells that fall within a specified range of a point;

d) exiting if the current level is the root to output the first
list of selected cells; and

€) replacing the current carrier blocks in the second list
with a single carrier block at the next more generalized
level in the hierarchy.

18. Apparatus storing a representation of a topological

structure having topological features, comprising:

a) a data storage medium; and

b) a digital data base stored on said data storage medium,
said digital data base including (i) a plurality of carrier
blocks of data representing the topological features at a
given level of detail, said data of each one of said
carrier blocks of said plurality being a representation of
a carrier which is a closed set including in its interior
a given topological object, (ii) at least one other carrier
block of data being in a hierarchical relationship with
respect to said plurality of carrier blocks so as to
represent the topological features at another level of
detail, said at least one other carrier block representing
a complex X' which is topologically equivalent to a
complex X represented by said plurality of carrier
blocks, and (iii) wherein said at least one other carrier
block of said complex X' constitiutes an index to said
plurality of carrier blocks of said complex X.

19. Apparatus, according to claim 18, wherein a carrier of

a carrier block at one level has the same boundary as a
corresponding carrier of another carrier block at another
level, and only one carrier block representing a camier has
data identifying the same boundary.

20. Apparatus storing a representation of a topological

structure having topological features, comprising:

a) a data storage medium; and

b) a digital data base stored on said data storage medium,
said digital data base including (i) a plurality of carrier
blocks of data representing the topological features at a
given level of detail, said data of each one of said
carrier blocks of said plurality being a representation of
a carrier which is a closed set including in its interior
a given topological object, (ii) at least one other carrier
block of data being in a hierarchical relationship with
respect to said plurality of carrier blocks so as to
represent the topological features at another level of
detail, said at least one other carrier block representing
a complex X' which is topologicaily equivalent to a
complex X represented by said plurality of carrier
blocks, and (iii) wherein said data of said at least one
other carrier block of said complex X' comprises more
generalized information than the information of said
plurality of carrier blocks of said complex X.

* 0k ok ok *

