United States Patent [
Mattingly

RS0 RTINS R R R O A

US005150295A
(111 Patent Number:

451 Date of Patent:

5,150,295
Sep. 22, 1992

[54] COMPUTERIZED SYSTEM FOR JOINING
INDIVIDUAL MAPS INTO A SINGLE MAP
PRODUCT

{751 Inventor:
[73] Assignee:

William Mattingly, Huntsville, Ala.

Teledyne Industries, Inc., Los
Angeles, Calif.

[21] Appl. No.: 526,144

[22] Filed: May 22, 1990
C3UIE T o KR GOGF 15/62
[52] U.S. Cl eoovoceeeecrieneesesssssoeeereenesessssssene 364/420

[58] Field of Search 434/130, 147; 364/449,
364/521, 420; 73/178 R; 340/990, 995, 998, 993

Primary Examiner—Gail Hayes
Attorney, Agent, or Firm—Beveridge, DeGrandi &
Weilacher

[57] ABSTRACT

An improved method of making a larger map from -
individual 7.5 minute digital line graph (DLG) data is
described herein. The process is fully automated and
performed by a computer with minimal human interac-
tion required. This eliminates errors and produces a
more accurate final map product. The method includes
conversion of the raw DLG data files into ARC/INFO
format, locating the border arcs of each individual data
set, edgematching the individual map data sets, and
joining the data sets into a single, large map coverage.
Any node along the border arc which cannot be auto-
matically edgematched is noted in a special error file. A
geographer then matches the unmatched edges which
contain an error in the input data. A large map product
is available as the product of the process.

12 Claims, 4 Drawing Sheets

30

22\

| 24
/

U.S. Patent Sep. 22, 1992 Sheet 1 of 4 5,150,295

FI1G.1
X X X X

X X ~—2—10

2N
><
>

Sheet 2 of 4 5,150,295

Sep. 22, 1992

U.S. Patent

vOld

[S30VdSHHOM H¥3SN NI 3HOLS |

[S35N343701 ONISS3008d 13S]

[A90710d40L @1Na3Y|

103rodd ANV A

NOI103M0dd dVW ¥3sn Ol

90710401 4711Ng

[S39vH3A0D OINIZONY

0L 3714 9170 LH3ANQD]

(4019 I4IANCD OL §3714 SHOW TiHM 0q]

]

1034400
SH3L1IWVHVYd
Jyv

SY313NVHYd ANV

SS3004d Ol S39vd3A0D
40 H38WNN NIv1ig0

NOISY3IANOO-910

€914

(018>

8¢ 1

d3Av1 HOV3 ¥04
39VH3A00 | S30NA0YHd

NIOP-X14

.Vm.\f\

S39VH3IAN0D S3HOLVW3IOQ3
—~—{ ¥04 MNIT-0.NY |
ANV AUNET-910

P e P

S3OVHIN0D O4NI/JYV
$30NQ0¥d

NOISH3IANOD-9710

Om)\

1NdNI SV
S3713 970 IVNAIAIANI

CLavis >

M3IAY3IA0 SS300ud

U.S. Patent

Sep. 22, 1992

Sheet 3 of 4

DLG-LINK. AML

(START)

5,150,295

[GET NUMBER OF COVERAGES TO EDGE MATCH |

[DO EVERY OTHER COVERAGE UNTIL ALL

COVERAGES PROCESSED}— 2 —(STOP)

|

" | DETERMINE EAST ,WEST,NORTH,SOUTH COVERAGES |

| INVOKE

ARCEDI T}

| ADD LINKS |

{ LOG ERROR |

[CALL AUTOLINK PROGRAM TO EDGEMATCH COVERAGE |

IS
COVERAGE YES
AUTOMAT ICALLY
EDGEMATCHED?
[INVOKE ARCEDIT]
[ADD LINKS |
[ADJUST AND SAVE]

FI1G.5

U.S. Patent Sep. 22, 1992 Sheet 4 of 4 5,150,295

FiX-=JOIN
START

[GET FILES TO PROCESS AND OUTPUT NAME |

[DO FOR EVERY COVERAGE |

DOES
- CLEAN
COVERAGE HAVE
TOPOLOGY COVERAGE
COVERAGE. HAVE
ADD EXTRA MAJOR
CORRECT NUMBER
OF ATTRIBUTES MINOR CODES

1
[DO FOR EVERY COVERAGE

1
[APPEND COVERAGE INTO OUTPUT FILE |

FI1G.6

5,150,295

1

COMPUTERIZED SYSTEM FOR JOINING
INDIVIDUAL MAPS INTO A SINGLE MAP
PRODUCT

BACKGROUND OF THE INVENTION

The invention relates to the art of map making. Geo-
graphic information is available in a variety of forms,
and numerous Geographic Inférmation Systems (GIS)
have been implemented and are used throughout the
world. These information systems allow organizations
to display, manipulate and analyze geographical data.

The United States Geological Survey (USGS) is one
of the major sources of raw geographical data at the
present time. USGS transforms a hard copy of a map
into a digital form. This is called a digital map. The
digital data is stored on tape and sold to users in an
ASCII format known as digital line graph (DLG) for-
mat (defined by USGS as Digital Line Graphs from
1:100,000 Scale Maps by the Data User Guide 2, avail-
able from USGS). This data is in a vector format. USGS
provides DLG tapes on various topographical cover-
ages including hydrology, roads, railroads, and miscel-
laneous transportation. Miscellaneous transportation
may include data such as power lines, pipes, air strips,
ski lifts, tramways and the like.

USGS provides DLG data blocks in map sections
which cover a 7.5 minute by 7.5 minute area of the
earth’s surface (7.5 minute map). This area is equivalent
to one-eighth of a degree longitude by one-eighth of a
degree latitude. The area encompassed by a 7.5 minute
map varies, depending upon the location on the earth’s
surface. Within the Continental United States, the area
is typically about 10-11 km east to west by about 19 km
north to south. More than 50,000 of USGS’s 7.5 minute
maps are required to completely cover the Continental
United States (CONUS) for each type of coverage (i.e.
50,000 maps for roads, 50,000 maps for railroads, etc.).
As a further example, the State of Kentucky requires
765 of the 7.5 minute maps to completely cover its
borders.

1t is often desirable to have a single map which covers
a larger area than the 7.5 minute map. Also, it is often
necessary to create a map which includes more than one
topographical feature, for example, a map with both
roads and railroads may be desired.

The Environmental Science Research Institute
(ESRI) has developed a software package called ARC-
/INFO which is used for processing the data from
DLG files. The DLG data files are not directly compat-
ible with the ARC/INFO system. Before ARC/INFO
can be used, the DLG data files must be converted into
ARC/INFO format.

ARC/INFO includes a program which allows the
user to convert the raw DLG data files into ARC-
/INFO format. This conversion program requires peri-
odic human interfacing with the program. Thus an
operator must be present throughout the conversion
process to input the proper parameters to the computer
at various stages in the conversion. The operator loads
the tape, and the program prompts the operator for
additional information. The system prompts the user for
the DLG file name, the number of files to process and
the name of the directory in which to store the data in.
This is a long, time consuming operation which is sub-
ject to error because of the constant human interaction.

The second step in producing a larger map from the
7.5 minute map sections is an edgematching procedure,

20

35

40

45

50

55

60

65

2

wherein the edge features of one map are matched to
the corresponding features on the four surrounding
maps. This process is completed in the prior art systems
by a manual edgematching process. This process will be
described in more detail below.

As shown in FIG. 1, a larger map 10 is often desired
as opposed to the individual 7.5 minute maps 12. An
enlarged version of the 7.5 minute map labelled A is
shown in FIG. 2. Map A is shown to contain various
arcs which represent topographical features (i.e. roads,
waterways, etc.). It will be appreciated by those skilled
in the art that an actual 7.5 minute map may contain
hundreds or even thousands of these arcs.

As mentioned above, the edgematching process of
the prior art systems requires a manual edgematching
step. To match the edges, the two adjacent data sets
representing the edges to be matched are called up onto
a computer screen. The computer screen typically
places these edges approximately one inch apart. For
every node along an edge (16 and 26, for example), the
operator must locate the corresponding node on the
adjacent data set. The operator selects the end node of
one of the edges, looks over at the adjacent edge,.makes
an interpretation of which feature on this edge he be-
lieves that the first end node should be joined to, and he
selects this feature. The operator then enters a com-
mand on his keyboard that joins these two features
together. This is called “snapping” the two features
together. This manual matching process must be per-
formed on every node along the edge, along every edge
on the 7.5 minute map, and around every map that is to
be joined. As mentioned above, there are more than
50,000 7.5 minute maps per coverage (i.e. hydrology,
roads, etc.) to cover the Continental United States.

Those skilled in the art recognize the time consuming
and tedious nature of this edgematching procedure.
Furthermore, matching of every node requires a judg-
ment on the part of the operator; hence, this process is
highly error prone. The operators become tired and
bored, nodes are completely missed, mismatched, and
many other human errors may be involved. It is also a
very time consuming process; therefore, it is also very
costly in terms of man hours and money. Additionally,
this process requires a graphic terminal to match the
edges on.

Furthermore, the final product is also full of errors. It
is virtually impossible to obtain an error free final map
product.

The final steps in creating the map product are to
correct the attribute files and to clean up any coverage
which does not have the correct topology. Then, the
various individual coverages (7.5 minute maps) desired
in the final product are combined into a single map
layer.

In the prior art systems, the user again was required
to manually interface with the computer, this time to
assure that the attribute files for each map matched up.
The attribute file of each individual file (7.5 minute data
file) had to be looked at individually to determine how
many attributes were missing. The correct number of
attributes cannot be determined until all of the files are
inspected. After inspecting all of the attribute files, the
operator then needed to determine the correct number
of attributes, and enter any missing attributes into each
individual file by means of a program routine called
ADDITEM. ADDITEM is a routine that is a standard
command in the ARC/INFO package which allows the

5,150,295

3
user to enter attributes. The operator is required to
enter the ADDITEM command over and over on the
terminal. This process is also extremely time consuming
and tedious.

The procedure for joining the individual maps into a
single coverage was relatively simple for the user in the
prior art systems. The user only needed to enter all of
the individual file names for the maps that were to be
joined. ARC/INFO would join these files into one map
layer. This is also a very tedious chore in situations
where hundreds or thousands of individual data files are
being joined.

As noted above, the process of the prior art requires
a large investment of time and money. Shown in Table
I are the approximate times requires to process 256 DLS
files using the prior art manual processing methods.

TABLE 1

Process Time

1. Convert DLG files into ARC/INFO,
building topology, projecting,
reading tapes, etc.

2. Edgematching (correcting map
features to meet at the map
borders).

3. Attribute correction and combining

100 man hours

100 man hours

32 man hours

of individual maps into a single
layer.

TOTAL 232 man hours

Since this data is processed manually, there are typi-
cally numerous errors which are present in the pro-
cessed data.

SUMMARY OF THE INVENTION

1t is an object of this invention to provide a procedure
for processing DLG data files in a more efficient and
less costly manner.

Another object of this invention is to provide a sur-
face area map product with dimensions larger than 7.5
minutes, wherein the map is error free.

Another object of the invention is to provide a fully
automated process for converting DLG data files into
ARC/INFO format. It is desired to totally eliminate
human interaction in the DLG data files into ARC-
/INFO conversion process.

Another object of the invention is to provide a fully
automated edgematching procedure that eliminates
human interaction and errors while edge matching the
smaller map sections into a larger map area.

Another object of the invention is to provide a fully
automated procedure for creating maps which contain a
plurality of topographical coverages.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other advantageous features of the inven-
tion will become evident from the following detailed
description, the attached comiputer programs, and the
attached figures,, wherein:

FIG. 1 shows a diagram of 32 7.5 minute maps in their
edgematched and joined format;

FIG. 2 shows an enlarged diagram of one 7.5 minute
map section before edgematching, along with the four
adjacent map coverages;

FIG. 3 is a flow chart of the overall process;

FIG. 4 is a flow diagram of the DLG-CONVER-
SION process;

FIG. 5 is a flow diagram of the DLGLINK.AML
process; and

5

—

0

20

25

40

45

65

4
FIG. 6 is a flow diagram of the FIX-JOIN process.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The invention is a computerized system which elimi-
nates the need for human interaction in the map produc-
ing process. An overview of the process is shown in
FIG. 3. The preferred embodiment of the invention uses
FORTRAN programs, in particular, FORTRAN 77. In
particular, the AUTO-LINK.FOR program was writ-
ten in FORTRAN 77 on a VAX computer. The pro-
grams ending with the “.AML” portion are the inter-
face to the ARC/INFO codes to drive the programs.
The process initially receives the raw DLG data as
input. A first. computer program (DLG-CONVER-
SION) converts the raw DLG data for each 7.5 minute
map into ARC/INFO format. ARC/INFO coverages
are generated using the following data set naming con-
vention:

H48N8103WOA

wherein

H—the coverage type for hydrology. The different
types of coverages are named as follows:

[H]ydrology,

[R]oads,

[T]rains (Railroads), and

[M]isc. Transportation (trails, etc.)

48 N8—represents the latitude of the Southeastern
corner of the 7.5 minute map. 48 represents de-
grees, N means north of the equator, 8 represents
0.875 degrees. Since each coverage is one-eighth of
a degree square, only the tenth of the degree is
needed for identification purposes.

103 WO—103 degrees west longitude of the South-
eastern corner, plus 0.00 degrees

A—this refers to the ARC/INFO type of data to be
converted to, labelled according to the following
convention:

[Alrea (polygons and lines),

[Ploints, and

[N]odes.

This procedure is fully automated. The raw DLG
data is generated from map products, such as existing
hard copy map products. These map products are put
into a digital form and placed on a tape. The tape or
digital map is available from USGS. This data is in a
vector format. The DLG data tapes are loaded into the
computer, the first and last DLG files to be processed
are entered, the type of topographical coverage is en-
tered, and the program is run. No additional user inter-
action is required.

The next step is the automated edgematching proce-
dure. This was the most difficult and challenging aspect
of perfecting the invention. The main program is called
DLGLINK.AML. The computer matches each node
on the border arc with the most closely matched node
on the other map’s border arc within the edit distance.
The edit distance is preferably set to the smallest dis-
cernable distance that can be digitized on a map of that
scale. A distance of 30 meters on 1:100,000 scale data is
preferred. Often the DLG data which is obtained from
USGS contains errors, because USGS uses manual pro-
cesses in producing the DLG files. If an error is present
in the raw DLG data, the computer will not be able to
match the node. A match is searched for over a distance
of five times the edit distance. If none is found, the

5,150,295

5

program notes this node failure and its location in a
separate error file. This error file is called the
DLGLINK.LOG file, or the “Log File” in the pro-
grams. These unmatched nodes must be manually
checked by a geographer after the remaining edges are
matched. This edgematching process will be described
in more detail below.

The final procedure step is the correction of the attri-
bute files for the coverage and the correction of any
coverage which lacks correct topology. The desired
coverages are joined into a single output coverage, and
a map is the final product. The program for the last
procedural steps is called Fix-Join.

The “Fix™ part of this program assures that the files
have the correct topology and the correct number of
attributes. Each 7.5 minute map data set includes a cov-
erage attribute file. To join the 7.5 minute map sections,
the coverage attribute files must match exactly. This
attribute file contains a record for each arc in the cover-
age, and details on what the arc is (e.g. read type, HWY
101, HSY 20, US 64, etc.). This program determines the
number of attributes required in all of the individual 7.5
minute maps and adds the correct attributes to each
individual file for any that are missing. This assures that
the coverage attribute files in the adjacent map sections
match up exactly, which, in turn, allows these map
sections to be joined together into a single coverage.
This process is fully automated, thus the need for
human interaction is eliminated.

The “Join™ part of this program also saves time for
the operator. This is the part of the system which joins
all the individual maps into one map. The operator need
only put in the file name for one of the files to be joined.
Recall that the prior art system previously required the
operator to enter every file name to be joined together.
In the system in accordance with the invention, the
computer will automatically generate the remaining file
names based on the latitude and longitude coordinates
of a single data file. This feature saves a substantial

15

20

25

amount of time, especially if hundreds or thousands of 40

individual coverage maps are involved.

Other quantitative data may be obtained from the
-data, such as the miles of railroad within the area, per-
centage of the surface over a certain elevation within
the area and the like. Also, other topographical map
features may be overlaid or superimposed over this
map. Buildings, military installation locations, or other
geographical features may be included in the map after
the larger map has been completed.

For purposes of comparison, Table II shows the em-
ployee time and computer time required to process the
DLG data into a finalized map product. By a finalized
map product in this specification, the inventor is refer-
ring to hard copy map products, map products stored
on tape or in other computer generated and readable
forms, or maps displayed on a computer screen. Hard
copy map products may be generated by any ARC-
/INFO supported plotter, this equipment being known
to those skilled in the art. The final map product may be
used for a wide variety of purposes. The maps may be
used to create a library of maps which document the
construction and/or development of a geographical
region. Environmental conditions in a region can be
monitored over a time period. Various types of geo-
graphic analysis may be performed on the map data.
For example, the miles of roadways or railroads over a
region may be ascertained. The surface area of a region
covered by water or over a certain elevation may be

45

55

65

6

determined. The maps generated may be overlaid with
other topographical features, such as the location of
particular buildings or other landmarks, military base
locations and other items of interest to the user. These
additional topographical features may be digitized into
the map or superimposed over the final map produce.

As in Table 1, 256 DLG files were processed using
the procedures in accordance with the invention.

TABLE II

Computer Time
8 hrs.

Man Time

0.1 man hours

Process

1. Convert DLG files into
ARC/INFO, building
topology, projecting, reading
tapes, etc.

2. Edgematching (correcting
map features to meet at map
borders).

3. Attribute correction and

8 hrs. 0.1 man hours

2 hrs. 0.1 man hours

combining of individual
maps into a single map
layer.

TOTAL

18 hrs. 0.3 man hours

Note the dramatic time savings that is realized when
utilizing the process of the invention, as opposed to the
human interfacing process of the prior art. A further
advantage to the process of the invention is the fact that
errors are virtually eliminated. Any edge which the
computer cannot match is noted in an error file as men-
tioned above. These edges must be matched manually
by a geographer.

Since the process is fully automated, the process may
be completed by the computer in the evenings or over
weekends. This keeps the computer available for nor-
mal business purposes during working hours.

Returning to FIGS. 1 and 2, the edgematching pro-
cess, performed by the program DLGLINK.AML, will
be described in more detail. When creating a large map
10 from the 7.5 minute maps 12, it has been found that
the automated edgematching process is the most diffi-
cult and technically challenging aspect of the proce-
dure.

It is preferred that the edges of the various maps be
matched by a checkerboard method. The edgematching
process will be described with particular reference to
the 7.5 minute map designated A in FIGS. 1 and 2.

The 7.5 minute map A shown in FIG. 2 contains
several arcs. An arc is comprised of nodes and vertices,
wherein the nodes are the endpoints of the arcs. Refer-
ence numbers 14 and 16 are nodes, and these nodes
define an arc. Vertices are represented by numbers 18
and 20. In actual map data, a 7.5 minute map may con-
tain hundreds or thousands of arcs. Using the checker-
board method, the arcs of map A are adjusted to line up
with the arcs of maps B, C, D and E. This method of
edgematching is called the checkerboard method be-
cause only the maps marked by an “X” in FIG. 1 are
allowed to be adjusted by electronically “shifting” the
map edge. The maps which are not marked by an “X”
are not electronically adjusted.

Each 7.5 minute map also contains four arcs which
are not part of a map feature at all. These arcs are the
border arcs which define the outer edges of the map.
One of the border arcs for map A is shown between
points 22 and 24 in FIG. 2. The USGS codes these
otherwise useless border arcs as —9999 in the attribute
file.

5,150,295

7

By using nodes which exist along the border arcs, the
process for edgematching becomes much less compli-
cated and less time consuming. Matches of internal arcs
are eliminated. Furthermore, using only nodes from the
border arcs prevents arcs from being drawn into the
border and collapsing the arc. The edgematching pro-
cess between maps A and C along border arc 22-24 will
be described.

Each map has four border arcs, namely, East, West,
North and South. The nodes and locations of the nodes
for map A are stored in four different arrays, one array
for each border. The same storage process is completed
with map C. Because map A is being matched to map C,
only the North nodes of map A need to be tested against
the South nodes of Map C. This process prevents a
possible erroneous match of node 28 to node 30. If all of
the nodes along the North border of map A have a
corresponding match with the nodes on the South bor-
der of map C, then the edge has been successfully edge-
matched. If a node fails to have a match, the location of
the failure is logged into a file, as described above.
These unmatched nodes must be manually checked by a
geographer however, in the overwhelming majority of
cases the map edges are successfully matched.

The edgematching process is completed for all four
borders of map A. If an edge coverage is missing, such
as on an outside piece of the larger map (see 7.5 minute
map 32 in FIG. 1), the value “NONE?" is passed, and the
edge is assumed to be matched.

In determining which node to match to the corre-
sponding node in the other map, the node is matched to
the node with closest value within a predetermined
range and within the edit distance. The edit distance is
input by the system user. It is preferred that the edit
distance be set to the smallest discernible distance that
can be digitized on a map at the scale being used. As
noted above, a 30 meter edit distance is preferred on
1:100,000 scale data. If a match is found, the two nodes
are snapped together. If a node needs to be electroni-
cally moved, the node alone is not moved. Rather, the
entire coverage, including all of the arcs, is moved
.proportionally. This type is movement is called “rub-
bersheeting”.

If all of the four borders are matched with the sur-
rounding borders automatically, there is no need for
manual inspection of the geographic data. The match-
ing process is more accurate than the prior art systems,
because there is no human interaction, thus, errors are
eliminated.

The process of the invention is used to output a final
map product in hard copy form. Other topographical
features may be overlaid or superimposed onto the map,
such as military installations, buildings or other geo-
graphic features. Other geographic analyses may be
performed on the finalized map data, such as the num-
ber of miles of roads or railroads, the percentage of the
surface area that is covered by water, the percentage of
the area above a certain elevation etc. Other types of
geographic analysis will be apparent to those skilled in
the art.

A portion of the disclosure of this patent document
contains material which is subject to copyright protec-
tion. The copyright owner has no objection to the fac-
simile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

0

—

20

25

30

40

45

50

55

60

65

8
COMPUTER PROGRAM

An algorithm of the various computer programs used
will be described in conjunction with FIGS. 3-6 and the
attached computer codes.

FIG. 3 shows the Process Overview. The system
begins by receiving the individual DLG data files as
input, as shown at 30. The first part of the process,
called DLG-CONVERSION 32, transforms the raw
DLG data files into ARC/INFO format.

After the data is in ARC/INFO format, the informa-
tion is processed by a program called DLGLINK.AML
34. DLGLINK.AML is used to edgematch the individ-
ual DLG data files to the surrounding data files. The
DLGLINK.AML recursively calls a program called
AUTO-LINK.FOR 36. DLGLINK.AML sends the
necessary information to AUTO-LINK.FOR, and
AUTO-LINK.FOR is the program which actually
matches the adjoining edges. The matched results are
sent back to DLGLINK.AML, which stores this data
and sends the next data sets to be matched to AUTO-
LINK.FOR.

After all of the edges are matched, the information is
processed by a program called Fix-Join 38. Fix-Join
cleans any topology with mistakes and adds any neces-
sary data to the attribute files. The attribute files of the
data sets must match exactly before the individual maps
may be joined. After the data sets are fixed, the individ-
ual map sections are joined into a single map layer. A
hard copy may be made. Various map layers, such as a
railroad layer and a road layer, may be added together
to get a more detailed map. Other map features may also
be added, or other geographic analysis may be run on
the data as discussed above.

The DLG-CONVERSION program is shown dia-
grammatically in FIG. 4. This program is to convert the
raw DLG data files into ARC/INFO format. The pro-
gram, first prompts the operator for the parameters of
the run. The input parameters are the base names of the
DLG file to convert, the first DLG file to process and
the last DLG file to process. The program double
checks with the user that all of the input data was cor-
rect. The program also prompts the user for the path-
names of the coverages, for example, hydrology, roads,
railroads or miscellaneous transportation coverages.
Their is also a double check feature on this data input
step. Each type of layer is stored in a separate work-
space, thus enhancing performance.

The main program calls a Routine named READ-
DLG-HEADER. This routine calls the DLG file to
determine the type of layer, UTM zone, and latitude
and longitude coordinates of the southeast corner of the
7.5 minute map. This information is used to generate the
map name in ARC/INFO format. This format ‘was
described above. The DLG-FILE name generated by
READ-DLG-HEADER includes the map scale (which
is used to set the tolerances and edit distance), the UTM
zone (for use in projection, UTM stands for Universal
Transverse Mercator, a standard map projection known
to those skilled in the art), the latitude and longitude
coordinates, and the coverage type. The READ-DLG-
HEADER opens the appropriate DLG file and obtains
the necessary information to name the coverage, UTM
zone for projection, tolerences and coverage type. The
coverage name is in the following format: [[HY-
DROJH103W036N2A([.HYDRO)] refers to a computer
directory; H corresponds to a hydrology coverage:
103WO corresponds to 103.00 degrees west longitude;

5,150,295

9
36N2 corresponds to 36.25 degrees north latitude; and
A represents an Area ARC/INFO coverage). This
coverage name is returned to the main program, DLG-
CONVERSION.

DLG-CONVERSION checks the input data for
polygon topology. Polygon data is coded A at the end
of the ARC/INFO format convention. If polygon data
exists, then a topology is built with the polygon option
(BUILD is a standard ARC/INFO command). The
polygon topologies for all of the data files are joined by
JOINITEM (a standard ARC/INFO command).

The presence of a Line topology is checked next, in
the same manner as the polygon topology, and a topol-
ogy with the line option is built. Similar operations take
place on the Point topology and the Node topology.

If the coverage is a hydrology coverage and it in-
cludes a polygon topology but no line topology, it is a
situation where the entire map area is a large lake or sea.
In this case, the line topology must be built in and coded
as —9999 to indicate that the lines are border arcs.

The temporary DLG attribute files are deleted. The
coverages for the various types of topology (area,
points, and nodes) are projected to the user output pro-
jection system and stored under the appropriate ARC-
/INFO naming convention. A routine called PRO-
JECT-COVERAGE projects the coverages to the
user’s base projection system. Various base projection
systems may be used, for example, state plane, AL-
BERS, Lambert, or others. The choice of projection
system depends on what projection is used by the user
in his normal mapping process. This choice is deemed to
be within the level of normal skill in the art.

If a polygon topology coverage exists, it must be
rebuilt after projecting it. The tolerance levels are set to
the default values and the topology is copied into the
user’s work space with the ARC/INFO naming con-
ventions described above.

The above procedures are performed on every DLG
data file which is input into the system. After all the
data files are in ARC/INFO format, the process for
edgematching the data files begins.

The program which is used to edgematch the maps is
called DLGLINK.AML, shown as a flow diagram in
FIG. 5. This program recursively calls the program
AUTO-LINK.FOR (AUTOLINK in FIG. §), which in
turn matches each map with the surrounding four map
coverage sections(AUTO-LINK.FOR may also be re-
ferred to as DLGLINK in some of the program codes,
flow diagrams and algorithms.)

DELGLINK.AML accepts the user’s parameters,
which include: the name of the Southeast coverage, the
horizontal coverage size in decimal degrees, the vertical
coverage size in decimal degrees, the number of hori-
zontal coverages and the number of vertical coverages.
The coverage name, which is generated by the routine
COV_NAME. enables the system to ascertain the loca-
tion of the southeast most corner and the type of cover-
age (roads, etc.). This name is generated in the standard
naming format for the coverage name described above.
The latitudinal and longitudinal coverages are deter-
mined from the input data. DLGLINK.AML also cre-
ates the error file called DLGLINK.LOG, Any cover-
age that is unable to be matched automatically is noted
in this file. After all of the automatic matching is com-
plete, the locations of the edges which were not
matched are disclosed to the operator. These locations
must be checked manually by a geographer before the
maps can be joined.

20

25

30

40

45

55

65

10

From the input data, the checkerboard pattern de-
scribed above is generated. The coverages for the east,
west, north and south directions are determined for the
first map section to be matched. Only every other map
in the horizontal and vertical directions are actually
adjusted by the computer, thus creating the “checker-
board pattern”. The fatal error file “FATAL.ERROR”
is created, after any previously created FATAL.ER-
ROR file is deleted. If this file is not deleted at the time
when the AUTO-LINK.FOR program completes the
edgematching process for this map, then a fatal error
was encountered when matching the map section. The
location of the error is stored in DLGLINK.LOG.

After the error file is created, the AUTO-LINK.-
FOR program is called. For each map section which
needs to be matched, DLGLINK.AML recursively
calls the AUTO-LINK.FOR program. This program
will be discussed in more detail below.

After all of the edges for the first map section are
matched, the east, west, north and south tables for the
next map section are generated. Any existing FATAL
ERROR file is deleted and a new FATAL ERROR file
is generated. AUTOLINK.FOR is called again. This
process repeats itself for every map section in the
checkerboard which needs to be matched.

DLGLINK.AML also calls a routine called GET-
COVS. This routine checks the input north, east, west,
and south coverages of the 7.5 minute maps to deter-
mine when the data is at the edge of the final map.
When at the edge, the value “NONE” is passed, to tell
the system that it is at the map edge, and the edge is
assumed to be matched as it is. GET-COVS further
calls the routine COV-NAME, which generates the
proper latitude and longitude coordinates which are
used by GET-COVS to determine if the data is from an
edge location.

As mentioned above, DLGLINK.AML calls the
program AUTO-LINK.FOR for each map section
which must be matched. This program takes advantage
of the fact that DLG data codes the border arcs as
—9999. If all of the nodes along the edge are matched to
the adjacent coverage nodes, these nodes are snapped
together, and the edge has been automatically edge-
matched. If any edge fails at only one node, the error
file is created and the location is noted, as described
above. The following criteria are used to generate the
links,

A) Only nodes on border arcs coded —9999 are con-

sidered;

B) Only one edge of coverage is compared to the
corresponding edge of the adjacent coverage (i.e.
north edge of one map compared to the south edge
of the adjacent coverage map);

C) Nodes are matched to the closest node within the
edit distance to create the link; ’

D) Only one link is allowed per node;

E) If all the border nodes (snapcover nodes) are
linked, the edge is linked; and

F) If all the edges are linked, the coverage is linked.

AUTO-LINK.FOR first initializes a variety of ARC-
/INFO subsystems by calling the following interface
routines which are available to all ARC/INFO users:
TTINIT, LUNINI, AMLINI, VINIT, GETINT, MI-
NIT, MESINI, MESIAM, and AMLTTY. These rou-
tines set up the environment to receive parameters from
DLG-LINK.AML. These are generic routines for in-
terfacing with the ARC/INFO. The user parameters
are read in, which include the edit coverage, the east

5,150,295

11
border coverage, the west border coverage, the north
border coverage and the south border coverage. The
edit distance is set to 30. Next the error file and the
output files are created.

The subroutine PROC-COV is used to open and read
in the data of the attribute file of the map to be matched.
If the arc is coded less than zero, this program recog-
nizes this as a border arc. If it is a border arc, the nodes
are recorded. If the slope of the line between the nodes
is between —45 degrees and +45 degrees, the nodes are
placed in a north/south table. If the slope is not in that
range, the data is stored in an east/west table. The mid-
point is then located at half way between the minimum
and maximum node location entries. Horizontal lines
have nodes on either the east or west sides and vertical
lines have nodes on either the north or south sides. The
two east/west and north/south tables are divided into
the four coordinate directions (east, west, north and
south) by comparing to the midpoint.

After the nodes for the map to be matched are placed
in the proper coordinate tables, the nodes in each table
are then sorted and placed in X,Y order. The X and Y
coordinate values depend on the map projection. For
UTM, typical coordinate values would be (650,000,
4,170,330). The EDITCOV nodes (i.e. the nodes being
adjusted to match the four adjacent coverages) are also
sorted into X,Y order by a “bubble sort”.

Each edge is processed, unless the edge has been
labelled “NONE”, which corresponds to a large map
edge piece. A logic variable called BAD-EDGE is set
to “false”; if BAD-EDGE becomes “true”, the cover-
age cannot be autolinked.

The programs are designed with the commands that
are needed to interface with the ARC/INFO system.
The commands needed are: arcedit, set edit feature,
editcover, coordinate keyboard, and add. To process a
cover, the nodes of the adjacent maps are separated into
the north, south, east and west edges for the cover. This
sorting is done by the PROC-COV routine also. First
the west edge of the map is matched to the east edge of
the “cover” map (the adjacent map). The location of
each node in the adjust map is compared to the cover
nodes within the edit distance, and the closest cover
node within the edit distance is returned. Once a match-
ing node is found, the ARC/INFO ASCII command to
add the link is executed. The links are later added by the
ARCEDIT command.

First, the closest match is sought within the edit dis-
tance. A subroutine called FIND-CLOSEST is used for
matching. If no match within the tolerance limits is
found within the edit distance, the distance is expanded
to five times the original distance. If no match is found
in this range, an error is noted by the computer, and the
logical variable BAD-EDGE is changed to “true”. If a
match within the tolerance limit is located in the wider
range, this match is snapped using the ARC/INFO
commands, for example, ARCEDIT and ADD.

This method of finding the closest match is repeated
for the east, south, and north edges of the map to be
matched. If no bad edge is found around all four edges
of the map to be matched (i.e. BAD-EDGE=.FALSE.
at the end of the matching steps), then the map is ad-
justed and saved. If a failure is noted, the error is noted
in the error file.

The subroutine FIND-CLOSEST is used to find the
closest node match within the edit distance. If a match
within the tolerance limit is found, the closest match is

—

0

(78]

0

40

45

50

55

60

65

12
located by a binary search, and the location of the suc-
cessful cover node is passed back to the main program.

The final steps in the matching process are completed
by a program called FIX-JOIN, shown in FIG. 6. As
discussed above, in order to snap to individual maps
together, the attribute files must match each other ex-
actly. Fix-Join receives as input: the name of the south-
east coverage, the horizontal size in decimal degrees,
the vertical size in decimal degrees, the number of hori-
zontal coverages and the number of vertical coverages.
Default numbers of attributes are preset in two files
called “MINOR” and “MAJOR”. The following steps
are repeated until every attribute file has the same num-
ber of MAJOR and MINOR code pairs.

First the latitude and longitude of the southeast cor-
ner are used to generate the coverage name. These
coordinates are incremented during the - successive
loops. When lines are shifted during the edge matching
process, the lengths of lines, the areas of polygons, and
the location of nodes are changed. When this occurs,
the coverage is said to not be “clean”. If the coverage is
a network coverage (Area) and it is not clean, the cov-
erage is first cleaned with the polygon option. If the
coverage lacks line topology, “topology” referring to
the relationship of map features to one another, the
topology is cleaned with the line option. “Clean” and
“Build” are ARC/INFO procedures which are used to
re-establish the topology after a shift during edge
matching. To determine the number of PAT (Polygon
Attribute Table) files, subtract 16 from the number of
attribute files and divide the result by 12. To determine
the AAT(ARC Attribute Table) file number, subtract
28 from the number of attribute bytes. This provides the
number of MAJOR and MINOR codes for the cover-
age.

If the number of attributes in the PAT and AAT files
do not match the maximum number of attributes in
PAT-MAX and AAT-MAX, a single item is added for
all missing attribute pairs. The items are added with the
ARC/INFO ADDITEM command discussed above.
Preferably, a single ADDITEM command is used to
reduce the input/output overhead.

If any file has more attributes than the default amount
or the previous PAT-MAX or AAT-MAX amount, the
values in PAT-MAX or AAT-MAX are increased to
correspond to the higher value.

The final step is to append or join the multiple 7.5
minute maps which have been matched into a single
output coverage. From the coordinates of the southeast
corner, the coverages are appended together as the
latitude and longitude coordinates are incremented. If
the coverage has been matched, the coverage is ap-
pended to the surrounding coverages. A large map
product is produced as the final product. Several map
layers may be added together and superimposed onto a
single map.

A copy of the program codes described above are
attached to the end of this specification, along with flow
diagrams and algorithms of these codes. This material
will be understood by those skilled in the art. All codes,
flow diagrams and algorithms referred to herein and
attached to this specification are relied on and incorpo-
rated by reference.

While the invention has been described in conjunc-
tion with particular embodiments, various modification
may be made without departing from the invention, as
defined in the claims.

5,150,295

13 14

&ARGS cov,hsize,vsize hnum, ‘um ingxwecrww v
¥* DLGLINK.AML PH wersio 1.1 Teledyne Brown - agimeering 7C¥ %
/* *Spywrite 1989 - Teledyne Brown Engineering

*
/. ~
/i
e L. - ——
/* Purpose: This AML is the main driver to the DLGLINK fortran program to
/* automate fhe edgematching process for DLG coverages.
/* This program figures out the proper coverages to be used for
/* edgematching and repetively calls the DLGLINK fortran program
/% to create a list of LINKS. The links are written into an AML
/* file which is executed ADD_LINKS.AML. The AML enters ARCEDIT
/* adds the links and adjusts the coverage if all the edges autcmat
/* properly.
/*
/* Finally the AML may create a file called DLGLINK.LOG. This
/* file contains any coverages that were not adjusted because the
/* computer could not make a determination for a LINK. These
/* coverages will have to be manually inspected before adjusting.
/*
/* VERSION 1.1
/* .
/* ~— change:
/* Aml now takes parameters arguments. This allows aml to be
/* called from other amls. Removed all global varaibles.

/* Start a watch file, If one has not already been activated by the user
&IF [Show &watch] = &OFF &then &do

&type Activating Watch file DLGLINK.WAT

&watch DLGLINK.WAT

&end
&else &type Using already activated watch [Show &watch)
&TYPE
stype DLGLINK version 1.1
&type
&type Copywrite 1989 - Teledyne Brown Engineering
&type
&typ This program will automatically edge match the coverages converted
&typ by DLG CONVERSION. A log file will be created DLGLINK.LOG which
styp lists the coverages that the DLGLINK could not process automatically.
&typ

/% SET SNAPPING DISTANCE FOR AUTOLINK
&S .SDIST := 30.01
&IF [NULL %cov%) &THEN &S cov := [Response 'Enter South Eastern Coverage Nar
&TYPE
&if ° [Exists %cov% -cover] &then &DO
&TYPE %cov% does not exist
send
&S cOVTYPE := [substr %cov% {[length %cov%] 1]
&s .ctype := [substr %covi 1 1}
&s dd := [substr [before %cov% N] 2]
&s fract := [substr [after %cov% N] 1 1]
&select $fracts
&when 0,5
&s fract := %fract%00
&when 1,6
&s fract := %fract%zs
swhen 2,7
&s fract := %fract%sof
- &when 3,8
&5 fract == %fract%75
&end
&s dd_lat := %dd%.%fracts !
&s dd := [substr [before [after %covi N] W] 2]
&s fract := [substr [after %covE W] 1 1}
&select $fracts
&when 0,5
&s fract := %fract%00
&when 1,6
&s fract := %$fract%25
&when 2,7

5,150,295

15 16
&s fract := %$fract%50
&when 3,8
&s fract := %$fract%75
&end

&s dd long := %dd%.%fractst

&S .DD_LAT := %DD_LATS%

&S .DD_LONG := 3%DD_LONG%

&IF [NULL %hsize%] &THEN &s hsize := [Response ’'Enter Horizontal size of co:
e in Decimal Degrees’ .125]

&IF [NULL %$vsize%] &THEN &s vsize := [Response ’'Enter Vertical size of covel
in Decimal Degrees' .125]

&type

&IF [NULL %hnum%] &THEN &s hnum := [Response ’'Enter number of Horizontal Co:
es’ 8]

&IF [NULL %vnum%] &THEN &s vnum := [Response 'Enter number of Vertical Cover
t 4}

&type

&IF [EXISTS DLGLINK.LOG ~FILE] &THEN &S CODE := [DELETE DLGLINK.LOG)
&S xnum := %$hnum% - 1

&S ynum := $vaoum$ - 1

&IF %.CTYPE% = 'M’ OR %.CTYPE% = *T' &THEN £¢ .gdict := 10C0.C

&type Starting DLGLINK at [Date -vfull]
&do x := 0 &to %xnum% &by 2
&do y := 0 &to %ynums &by 2
&s DD lat := %.dd lat% + (%Y% * %vsize$)
&s DD_long := % dd_long% + (%x% * %hsize%)
&call get_covs
&IF $edtc® NE NONE &THEN &DO
&type RAK KKK KA A ARk Kk k* Processing %edtc% KAKRIAKRKRKR IR AR Nk kA *F*
&IF [EXISTS FATAL.ERR -FILE]) &THEN &s code := [delete FATAL.ERR.1)
&S UNIT := [OPEN FATAL.ERR.1 CODE ~-WRITE]

&S CODE := [CLOSE -ALL]
&data r wwmSsrc:dlglink
$edtch
%ecovs
$wcovi
$ncov%
$scov%
%.sdist%
&end
&ECHO &ON -
&IF {EXISTS FATAL.ERR.1 -FILE] &THEN &DO
&TYPE fatal error during link generation
&stop
&end
&r add links.aml
&ECHO &OFF
&type [date —-vfull]
&end
&end

- &end

&do x = 1 &to %$xnum% &by 2
&do y := 1 &to %ynum$ &by 2
= /% check coverages and check for proper topology
&s DD lat := %$.dd lat% + (%¥Y% * %vsize%)
&s DD_long :=-%.dd_long% + (%x% * %hsize%)
&call™ get_ covs
&IF %edtc% NE NONE &THEN &DO
&type Ahkkkhkkhkkkhkkkkk Processing %edtc% Fhhkhkhkkkhkhkhkdkdhdhkhkkhkdhhkdnkx
&IF [EXISTS FATAL.ERR.l -FILE] &THEN &s code := [delete FATAL.ERR.]
&S UNIT := [OPEN FATAL.ERR.l1 CODE -WRITE]
&S CODE := [CLOSE ~-ALL])
&data r wwmSsrc:dlglink
$edtcH
$ecovs
fwcovi
$ncovid
tscovi
$.sdist%
&end

5,150,295
17

&ECHO &ON
&IF [EXISTS FATAL.ERR.1 -FILE} &THEN &DO
&TYPE fatal error during link generation
&stop
&end
&r add links.aml
&ECHO &OFF
&type [date -vfull]
&end
&end
&end
&type
&type Autolink completed at [Date -vfull]
&type
&TYPE Watch file [show &watch] still active
&return

&routine cov name

&s fract := TSubstr [After %t _lat% .] 1 1]

&if [quote %fract%] < [guote O] &then &s fract := 0
&s tcov := %.ctype%{before %t lat$% .]IN%fract%

&s fract := [Substr [After %t _long% .] 1 1)

&if [quote %fract%) < [guote 0) &then &s fract := 0

&s tcov := %tcovi[before %t_long$ Jstracts%covTYPE%
&return
&end

&routine get covs

&s t_long := %dd LONG%
&s t_lat := %dd_Tats
&call cov_name

&if [exists %tcov% —-cover) &then &s edtc := %tcovs
&else &DO

&s edtc := NONE

&return

&end

h’\LC-i Ao ld
&s t_long := 3dd LONG% + %% °

&5 t lat 1= %dd_Tats
&call cov name
&if [exists $tcov$% -cover) &THEN &s wcov := %$tcovh
&else &s wcov := NONE
&s t_long := %dd_LONG%
. &s t_lat := 3dd_Tat% ~ 3vsize}
&call cov name
&if [exists %$tcov: -cover] &THEN &S scov := %tcovd
&else &5 scov := NONE
&s t_long := %dd LONG% -~ %hsizet
&s t_lat := %dd_Tat%
&call cov name
&if [exists %$tcov: -cover} &THEN &S ecov := %tcov$
&else &s ecov := NONE
&s t_long := %dd LONG%
&s t_lat := %dd_Tat% + 3%vsizes
&calT cov name
&if [exists %$tcov$ —cover] &THEN &S ncov := $tcovs
&else &s ncov := NONE

18

&RETURN
6 Ueesion Tele dynt

/* Dlo_ Conver51on ,fA .rsten 2.0 Teledyr . ‘Brown Eng
Vi - Copywrxte 1989 - Teledyne Br.wn Engineering

* .
j* ' Version 1.0
/*
/* Purpose:
/* This routine converts the raw DLG files which were read onto dis
/* using copy. The files are converted to ARC/INFO coverages for
/* [Alrea (Polygons and Lines), [Ploints, ands [N]lodes. Coverages
/* are named using the following conventions:

Y H48NB103WO0A

Variabl

Revision:

Revision:

Revision:

vy

Revision:

Revision:

Revision:

Revision:

5,150,295

19 20
[H]ydrology [Alrea
[R]oads [Ploints
[T]rains [N]odes

[Mlisc. Trails

48N8 is the Latitude of the SE corner, where 48 is the degrees :
8 represents .825 degrees. Because each coverage is 7.5 minute:
square we need only represent the tenth of a degree.

103W0 is 103 degrees Longitude and .00 degrees.

es:
base name Dlg pathname not including version nur
start version First DLG file to process
end version First DLG file to process
hydro path pathname to Hydrology Workspace
road path pathname to Roads Workspace
rail path pathname to Railroads Workspace
misc_ path --.. pathname to Misc Transportation Worksp:
potion Option to be used for CLEAN or BUILDs
failed .«.. set by routine read dlg header, this
variable is .TRUE. Tf the routine was
unable to read the proper DLG file
dlg file «+«+. Current DLG file name
cover .+».. Coverage name as determined by
read _dlg header. ex H37N0O76W0
type -... First two Characters of coverage type
incoverage Coverage to be projected
outcoverage Output projected coverage
tolernc Coverage Fuzzy Tolerance determined
by read _dlg header
.SE_LAT The latitude of the southeast corner
for the .5 by 1 Quad
.SE_LONG .+.. The longitude of the southeast corner
' for the .5 by 1 Quad
Version 1.1
Added capability to store the four different Coverage
types into different workspaces. This doubled the
processing speed by storing coverages in different
areas from the conversion area.
Modification to allow automatic detection of DLG file
resolution and specification of processing tolerances.
Version 1.2

Made more 'user friendly’ and modified messages for
increased.

Version 1.3

+
thanged tolera~—e variable to tolernc to TT;Lto get the
TOLERANCE'fem&Mutho be recognized. .

Lormmang

\ Version 1.4 _

Added SET PROT step to set the protection on all the coverages
created to allow universal access

_ Version 1.5
Force Hydrology coverages to be built with POLY option. 1In
addition if the coverage has polygon topology, it must have
line topology. All hydrology coverages must have net topology

Version 1.6
Removed un-needed code and re-documented. Changes were made
to ensure non Hydrology coverages were not built with poly opt

Version 2.0
Added error handling logic to automate processing further. TI
program will attempt to run the automated edgematching, fix_jc
and first step processes if possible. If errors are encounte:
they will halt that section of the processing. For example, j
HYDROLOGY has an edgematching problem, the program will perfo:
all the steps for the other feature classes. Names are obtair

5,150,295
21 22

/* from the TOPO NAMES data base.

/*

&severity &error &fail

&SETCHAR &SEP

/* This AML traps all errors that it can handle in the code.
/* If an error is created, No access, Lack of DISK Space etc. We need to
/* fail
/*

&system set prot=(s:rwed,o:rwed,g:rwed,w:rwed)/def

/* Start a watch file, If one has not already been aciivated by the user
&IF [Show &watch] = &OFF &then &do
&type Activating Watch file DLG CONVERSION.WAT
&watch DLG_CONVERSION.WAT -
&end ‘
&else &type Using already activated watch [Show &watch]

&TYPE Automatic DLG Coversion Process Version 2.0
&type -

&type Copywrite 1989 - Teledyne Brown Engineering
&type

&IF ° [VARIABLE .SE_LAT] &THEN &s .se_lat := 999.0
&IF ° [VARIABLE .SE_LONG] &THEN &s .se_long := 999.0

/* Get name and versions of files to be converted

&do &until [Query ’'Yes or No (yes)’ .TRUE.]
&type
&s base name := [Response 'Please Enter raw data DLG file’)]
&s start_version := [Response ’'Starting Version'’)
&s end_version := [Response ’'Ending Version’]
&type Are these correct?

&type .

&type Base name $base_name%
&type Start version $start version$%
&type End version tend_version%
aLype oL

&erd

/* Get pathnames for distribution of coverages
/* Default Workspaces are the current, call make_path to create those
/* pathnames -

make path # § 0

&s current := %.sys_path$%

make path %$current% hydro 1

&s hdef := %.sys_path%

make path %$current% roads 1

&s rdef := %.sys_path$

make path %current% rails 1

&s tdef := %.sys path%

make path %current% misc 1

&s mdef := %.sys_path$%

&setchar &function .+ +.
&do &until .+Query ’'Yes or No (yes)’ .TRUE. +.
&type
stype *** OUTPUT PATHNAMES ***
&do &until .+Exists %$hydro_path% -DIR+.
&s hydro_path := .+Response ’'Enter Hydrology Workspace’ $hdef%+.
&end »
&do &until .+Exists %road path% -DIR+.
&s road_path := .+Response ‘Enter Roads Workspace’ %rdef%+.
&end
&do &until .+Exists %rail_path% -DIR+.
&s rail_path := .+Response ’'Enter Railroad Workspace’ %$tdef%+.

&end

&do &until .+Exists %misc_path% -DIR+.
&s misc_path := .+Response ’'Enter Misc. Trans Workspate’ $mdef3+.
&end

&type

&type Are these correct?
&type Hydrology path $hydro_patht

&type
&type
&type
&type
&end
&type

5,150,295

23 24
Road path $road_path%
Rail path %$rail path%
Misc. path $misc_path%

&setchar &function []

&type

&type DLG conversion started at [DATE -VFULL)

&type

&do &while %start version% LE %end version%
/* Process DLG File Conversion

&s potion

:= POLY

&call read dlg header .
&if %failed% OR [Exists %cover%a ~cover] OR [Exists %coverip -cover) or
[Exists %cover%n -cover] &then &do

&type **ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR* *
&type ** * %
&type ** ABORTING DLG %dlg file%
&§if ° %$failed$% &then &do
&type ** Coverage %cover% already converted *k
&end
stype ** o *
.&type'*********k****** hkkkkkkkhkhkhkok ok hdkokk ko okkkkok k %k ok ke koW
&type
&end \

selse &do

/* Check existence of temp coverages and Kill em

&type kkhkhkh ARk bk Ak hkhhkhkhkkkhkhkhhkhhrhhhkhkkhhkhhhkkdhhhkkkhkhhxk
&type ** BEGINNING CONVERSION FOR DLG %start_version%
&type ** COVERAGE %cover$%

&type ****************i*************************fr**’k*******
[Exists t$a -COVER] &then KILL t$a ALL

[Exists t$p —cover] &then Kill tS$p ALL

[Exists tSn -cover] &then Kill t$n ALL

[Exists t$alb -cover] &then Kill t$alb ALL

[Exists tScalb -cover] &then Kill t$calb ALL

[Exists t$alb2 -cover) &then Kill t$alb2 ALL

&if
&if
&if
&if
&if
&if

/* Do Basic Conversion

DLGARC optional %dlg_file% t$a t$p t$n

&ty

pe

Coding Coverages

/* Check for polygon data
&if [Exists t$a.pcode -INFO] &then &do

ARC

/*

/*

Polygon Topology Exists
USGS Coverages are CLEAN and attributes are in ascending order ¢

we can use an ordered relate. This may not be true for DLGs cre
by other sources

PATCH TO TRY AND FIX HYDROLOGY CODING PROBLEMS. MOST PROBLEMS ?
CAUSED BY POOR LABEL PLACEMENT AND EXTRANEQUS LABELS BEING CREA"
BY DLGARC

&DATA ARC INFO

SEL T$A.PCODE
RESEL FOR MAJOR1 GE 50

NSEL

OUTPUT BAD.LST INIT
PRINT TSA-ID

STOP STOP
&END

&S
&S

&IF %STATS%

UNIT :=
LINE :=

[OPEN [.INFO)BAD.LST STAT -READ)
[READ %UNIT$ STAT]

= (&THEN &DO

ARCEDIT

EDITCOV TSA

EDITF LABEL

SEL ALL

/*

/*

/*

/*

/*

ARC
SEL
CAL
CAL
STO

ARC

SEL
DEL

5,150,295
25 26
NSEL

&DO &WHILE %STAT% = 0
ASEL $ID EQ [UNQUOTE %LINE%)
&S LINE := [READ %UNIT% STAT]
&END

DELETE

SAVE

QUIT

&END

&S STAT := [CLDSE $UNIT%])

/* END OF PATCHES -
TR fere -Ip- Sol)
BUILD t$a POLY

JOINITEM TSA.PAT ¥$: PCOPE TSA.PAT TS$A-ID TSA-. -:ORDERED
&s potion := POLY
&end \

&ELSE &s POTION := LINE

Check for line data
&if [Exists t$Sa.acode -INFQO] &then &do
/* line Topology Exists */
BUILD TS$a Line
JOINITEM TSA.AAT TSA.ACODE TSA.AAT TSA-ID TSA ID ORDERED
&end

Check for point data (Degenerate lines)
&if [Exists t$p.xcode -INFO] &then &do
/* Point Topology Exists */
BUILD T$p POint
JOINITEM TS$P.PAT TSP.XCODE TS$P.PAT TS$P-ID TS$SP-ID ORDERED
&end
&else kill t$p
Check for node (point) data
&if [Exists t$n.ncode -INFO] &then &do
/* Node Topology Exists */
BUILD T$n POINT
JOINITEM TSN.PAT TSN.NCODE TS$N.PAT TS$N-ID T$N-ID ORDERED
&end
&else kill t$n

If there are no codes for the arc coverage, we dont need it so
kill it

&if ~ [Exist tSa.pcode -INFO] & ~ [Exist t$a.acode -INFO] &then &do

kill tSa
&end

CLEAN up by removing .ACODE .PCODE .XCODE and .NCODE in INFO
&if %$type% eg HY AND [Exists t$a -cover] &then &do
&s potion := POLY
¢if ~ [Exists t$a -poly]} &then build t$a poly
&if [Exists t$a -line] &then &do

-

/* This is a very special case. We have polygons but no lines,
/* This is normal for large lakes or seas. 1In this case we have
/* to build the line topology and code it with a MAJOR1 MINORI.

/* these arcs are then coded -9999 for border arcs.
build t$a line

ADDITEM TSA.AAT T$SA.AAT MAJOR1 6 6 1I

ADDITEM TSA.AAT TSA.AAT MINORL 6 6 I

&data ARC INFO

TSA.AAT)
C MAJOR1 = -9999
C MINOR1 = -9999
P STOP

&end
&end
&end
&data ARC INFO

&if [Exists TSA.ACODE -INFO] &then &do
T$A.ACODE
ETE TSA.ACODE
* .send

&if [Exlsts TSA. PCODE —INFO] &then &do

5,150,295
27 28

SEL TSA.PCODE

DELETE TS$A.PCODE

Y
&end
sif [Exists T$P.XCODE -INFO) &then &do
SEL TS$P.XCODE
DELETE TSP.XCODE
Y -
&end
&if [Exists TS$SN.NCODE —-INFO] &then &do
SEL TSN.NCODE
DELETE TSN.NCODE
Y
&end
STOP STOP
&end
/* END OF INFO SESSION
&if [Exists T$A -cover] &then &do
&s incoverage := TSA
&s outcoverage := TSALB
&call project _coverage
&end
&if [Exists TSP -cover] &then &do
&S incoverage := TSP
&s outcoverage := %coveritP
&call project coverage
send -
sif [Exists TSN —cover) &then gdo
&s incoverage := TSN
&s outcoverage := %coversN
&call project_ coverage
&end
/* We have to re-build a polygon coverage after projecting it.
sIf [Exists TSALB -COVER] &then &do
BUILD TSALB %potion%
COPY TSALB %cover3a
TOLERANCE %cover%hA FUZZY %tolernct
&end
/* Set Tolerances for coverage.
&end
stype [date -vfull]
&s start version := %start_version% + 1
send - -
/*
/% Here is where we start the execution of the auto-edge and optionally othe
/* procedures. Any error at this point is FATAL and we would never have mac
/* it here.
&type
&type DLG conversion completed at [DATE -VFULL]
&type
&type Watch file [show &watch] still active
&return
sroutine read dlg header
’* :
/% This routine opens the appropriate DLG file and obtains the
/* information necessary to name the coverage, utm zone for
;* projection, Tolerences , and coverage type.
¥
/* Variables:
/* base_name Dlg pathname not including version nur
/* start_version First DLG file to process
/* failed set by routine read dlg header, this
* variable is .TRUE. 1f the routine was
J*) unable to read the proper DLG file
T/ dlg_file «... Current DLG file name
/* cover Coverage name
/* unit DLG file unit
/* line ... 1Is used to read in each line

from DLG file

5,150,295

29 30
/* i Temporary counter
Vad utm_zone UTM zone for DLG file projection
/* lat «o.. latitude of se corner
/* long longitude of se corner
/* type ... PFirst two Characters of coverage type
/* hydro_path pathname to Hydrology Workspace
/* road_path pathname to Roads Workspace
/* rail_path pathname to Railroads Workspace
/* misc_path pathname to Misc Transportation Worksps

&SEVERITY &ERROR &FAIL

&s failed := .FALSE.
&s dlg file := %base_name%;%start_version%
sif ~ TExists %dlg _file% -FILE] &then &do
&type ABORTING CONVERSION OF sdlg_fllEs UNABLE TO OPEN INPUT FILE
&s failed := .TRUE.
&return
&end

&s unit := [Open %dlg file% stat -read]
&s line := [Read %unit% stat)
&s line := [Read %unit% stat]

/* line 2 has resolution
&s tolernc := [Trim [Substr %line% 53 8] -both ’ ']
&select %tolernc%
&when 100000
&5 tolernc := 12.5
&when 24000
&s tolernc := 3
&when 2000000
&s tolernc := 500
sotherwise
&do
&type Unknown tolerance %tolernct
stype setting to default value for 100,000 data
&s tolernc := 12.5
&end
&end

&do I := 1 &TO 2
&s line := [Read %unit% stat]

[N PR

/* ‘line 4 has the zone
&s utm_zone := [Trim {[Substr %}1ne% 13 6] -both ']
&do I := 1 &TO 10 -

&s line := [Read %unit% stat]

&end

&if %stat% ne 0 &then &do
stype error in DLG file format
&s cover := ERROR
&s failed := .TRUE.
&return
send

/* Line 14 has the SE corner

&s t$lat := [abs [unquote [substr %line% 9 8]]]

&s tS$long := [abs [unquote [substr %line% 21 8]]]

&if %t$lat% < %.se_lat% &then &s .se_lat := %t$lats

&if 3t$long% < %.se_long% &then &s .se _long := tlong%

&s long := [Translate [Trim [Substr %line% 21 5] -both ' '] W .]
_&s long := [Trim %long% -both -1

&s lat := [Translate [Trim [Substr %line%$ 9 5] ~both ' '] N .]

&s line := [Read %unit% stat]
/* Line 15 has the coverage type

&s type := [Substr %$line% 1 2]
&Select %typet

5,150,295
31 32

&when HY
&do
make path %$hydro path% h%lat%%long% 2
&s cover := $%$.sys paths
&end h

&when RO
&do
make_path %road path% r%lat%%long% 2
&s cover := %.sys paths
&end

&when RA
&do
make_path %rail path% t%lat%%long% 2
&s cover := %.sys path%
&end -

&when PI
&do
make_path %misc_path% m%lat%%long3 2
&s cover := %.sys path%
&end -

&otherwise
&do
&type unknown Coverage Type
&type %line%
&type
&type Saving Locally using X prefix
&s cover := X%lat%%long}
&end

send

&s stat := [Close %unit%]
&return

&routine project coverage : -
/* This is the routine called to project coverages from there utm projectior
/* to the users base projection system. The USSDC GIS uses an ALBERS

/* projection as data is aguired CONUS wide.

/* For users who do not require any projection changes, simply have this
/* routine copy incoverage to outcoverage and return.

*
;* The variables used to pass parameters are:
/*
/*
A Variables:
/* incoverage Coverage to project
/* outcoverage .+».. Output coverage name
/* utm_zone .++. Utm Zone of incoverage

PROJECT COVER %incoverage% %outcoverage$
{unguote INPUT]
[unguote 'PROJECTION UTM')]
(unguote ‘ZONE ‘%utm_zonek]
[unguote ‘UNITS METERS’]
fungquote 'PARAMETERS']
/* Output Projection Parameters
[unguote 'OUTPUT']
[unguote 'PROJECTION ALBERS']
[ungquote ’'UNITS METERS']
[ungquote 'PARAMETERS']
[unguote 29 30 00’}
[unguote 45 30 00’}
[unguote ’'-96 00 00']
[unguote 23 00 00']
[unguote 0.0]
[unquote '0.0']
[unguote 'END']
&return
PROGRAM DLGLINK)
IMPLICIT NONE /

c DLGLINK Version 1.0 TELEDYNE BROWN ENGINEERING

;':nnnnnnnnnnnonnnnnnnnnnnnnnnnnnnnonnonnnnnnnnnnnnnnnnonnnn

Purpose:

5,150,295
33 34

COPYWRITE 1989- TELEDYNE BROWN ENGINEERING

This program replaces the autolink command for ARCEDIT and
creates LINKS for DLG coverages. The program is very specific
to standard USGS DLG coverages. Its purpose is to automate t}
edgematching process whenever possible., The autolink command
arcedit makes too many mistakes in calculating links and
therefore requires a user to verify the generated links. This
program takes advantage of the fact that DLG coverages have ec
or border arcs coded -9999. This elimates huge numbers of noc
from consideration during AUTOLINK,

Additionally we can guarantee that only one node is allowed tc
snap to a match nodes. 1If all the nodes along the snapcover
have a link, then the edge has been automatically edged. 1If
all edges have links generated correctly, then the cover can
be adjusted without user intervention.

If one edge fails the criteria, the cover is listed in an errc
file so that it can be verified manually later. The fcllowing
the criteria used to generate links.

1. Use only nodes that belong to arcs coded -9999, this ensu:
we dont collapse features.

2. Only use the one edge of the snapcover. Thie can be
determined because all coverages are quadrangular. This
reduces search time and is the only way we can verify all

links are present.

3. Link are added based on the snapcover edge to the closest
: node of the EDITCOVERGE. The link must be less than or
equal to the SNAP distance.

4. Only one LINK is allowed to a single snapcover nrode.
5. 1If all snapcover nodes are linked, the edge is linked

6. If all edges are correctly linked, the cover is linked.

To Log the failure of an autcedge, we create & file DLGLINK.LOG
Each entry in this file requires edgematching

Version 1.1

'HChange:‘_‘—“““
Code modified to test if node causing a fatal link error
is a pseudo-node. If its a pseudo-node then we really
dont have a problem.
Version 1.2
Change:

a8 {c Of.l“'(‘\"’\a-og’
Change sort;§l§e4;hhm—to a Shell-Metze~ .sort.

INTEGER*4 IS PSEUDO

INTEGER*4 ECOUNT,WCOUNT,NCOUNT, SCOUNT
STRUCTURE /STRUC3/

REAL*4 X

REAL*4 Y

END STRUCTURE

INTEGER*2 ARC_MAX

PARAMETER (ARC_MAX=1000)
RECORD /STRUC3/ TEMP

RECORD /STRUC3/ EAST(ARC_MAX)
RECORD /STRUC3/ WEST(ARC_MAX)
RECORD /STRUC3/ NORTH({ARC MAX)
RECORD /STRUC3/ SOUTH(ARC MAX)

COMMON /COVS/ EAST,WEST,NORTH, SOUTH, ECOUNT,WCOUNT, NCOUNT,

SCOUNT

5,150,295
35 36
INTEGER*4 EDITCNT

RECORD /STRUC3/ EDITND(ARC_MAX)
COMMON /EDCOV/ EDITND,EDITCNT

STRUCTURE /STRUC4/
REAL*4 X1

REAL*4 Y1

REAL*4 X2

REAL*4 Y2

END STRUCTURE

RECORD /STRUC4/ LINK

CHARACTER*128 EDITCOV,NCOV,ECOV,WCOV,5COV, LINK_PATH,ERROR_ PATH
CHARACTER*128 AUX PATH

INTEGER*4 I,T,LAST,LINK CHANNEL,TYPE,IRECL, ERROR_CHANNEL
INTEGER*4 IERR EDITPT, IREC, AUX CHANNEL

REAL*4 X,Y,EDIT_DIST

LOGICAL*4 SORTED,EXST,BADEDGE, MATCH

INTEGER*4 ILEN,IVAL,IOP,ICNT,K,IS

REAL*8 RVAL

CHARACTER*128 IBUFF

BEGIN DLGLINK

Initialize ARC/INFO subsystems

Qo000

CALL TTINIT
CALL LUNINI
CALL AMLINI
CALL VINIT
CALL GETINT
CALL MINIT
CALL MESINI

GET PARAMETERS

a0

CALL MESIAM('DLGLINK’)
CALL INFORM({'’AUTO LINK VERSION 1.27,-1)

CALL INFORM('Copywrite 1989 Teledyne Brown Engineering’,-1)
CALL AMLTTY
CALL RDLINE(EDITCOV,MATCH)
CALL RDLINE(ECOV,MATCH)
CALL RDLINE(WCOV,MA=SH) murci bo)||
CALL RDLINE(NCOV ,MI* H) mATCH
CALL RDLINE(SCOV,MATCH)
CALL LINTRP(O0,IOP,IBUFF,ILEN,IVAL,RVAL)
EDIT DIST=RVAL
CALL MESRL(EDIT_DIST,3)
CALL INFORM('’Snapping Distance set to %1% ',-1)
C .
C Name the Error file and the output aml
C
AUX PATH='BADLINKS.LOG’
ERROR PATH='DLGLINK.LOG'
LINK PATH='ADD LINKS.AML'
AUX_CHANNEL = =1
CALL PROC_COV(EDITCOV)

for the editcoverage we take all the nodes, place them in EDITND and SORT
in order by X,Y

anNnoOn

T=1

DO WHILE(T.LE.WCOUNT)
EDITND(T).X=WEST(T).
EDITND(T).Y=WEST(T).Y
T=T+1
END DO

I=T

T=1

DO WHILE(T.LE.SCOUNT)
EDITND{I).X=SOUTH(T).
EDITND(I).Y=SOUTH(T).

C

5,150,295
37 38

T=T+1
I=1+1
END DO

T=1

DO WHILE(T.LE.NCOUNT)
EDITND(I).X=NORTH(T).X
EDITND(I).Y=NORTH(T).Y
T=T+1 .
I=I+1 -
END DO

T=1

DO WHILE(T.LE.ECOUNT)
EDITND(I).X=EAST(T).X
EDITND(I).Y=EAST(T).Y
T=T+1
I=I+1
END DO

EDITCNT=1-1

C Lets Sort EDITND, there are EDITCNT entries. Use Shell-Metzer sort.

c

40,

48
60

THERE

e R+ NeNeXg) (e XeKeXpXe]

Write

[gNeNe]

100
101
102
103
104
222
223
C

IS=EDITCNT
IS=INT(FLOAT(IS)/2.0)
DO WHILE(IS.GE.1)
DO 50 K=1,1IS
LAST= EDITCNT-IS
DO 60 I=K,LAST,IS
T=1
TEMP.X=EDITND(I+IS).X
TEMP.Y=EDITND(I+IS).Y
IF (TEMP.¥TSE.EDITND(T).X) GOTO 48

T41S EDITND (®+i.. 5 .X=EDITND(T).X S
" ——""EDITND(T+1S).Y=EDITND(T).Y
T=T‘-IS ¥

IF(T.GE.1l) GOTO 40
EDITND(T+IS).X=TEMP.X
EDITND(T+IS).Y=TEMP.Y
CONTINUE
CONTINUE
IS=INT(FLOAT(IS)/2.0)
END DO

SORTED

Lets process each edge, IF cov is NONE there is not an edge

BADEDGE=.FALSE.

lets get a Link path open
the link file is an aml which has the commands to add the links
to the coverage and optionally adjust and save it.

.CALL ACREAT(LINK_CHANNEL,LINK PATH,IERR)

IF(IERR.NE.O) THEN
CALL FATAL('UNABLE TO CREATE LINK FILE’,-1)
ENDIF

commands to enter arcedit, set editfeature, editcover
coordinate keyboard, and add

WRITE(LINK_CHANNEL,lOO)

WRITE(LINK_CHANNEL,lOl) EDITCOV

WRITE(LINK_CHANNEL,IOZ)

WRITE(LINK_CHANNEL,IOB)

FORMAT(*ARCEDIT’,/,'CCORDINATE KEYBUARD')

FORMAT(’EDITCOV *,A128)

FORMAT('EDITF LINK’)

FORMAT(’ADD')

FORMAT('1,',F14.4,',',F14.4)

FORMAT(1X,Al1l2)

FORMAT(1X,A6,' Edge. Location ’',F14.2,',',F14.2)

C To process a cover we read in all the necessary nodes for the snapcover
C sorting them into there NORTH SOUTH EAST and WEST edges. 1If we are

5,150,295
39 40

C linking to the East cover, its west edge is matched upto. Matching is
C done by processing through each node of the snapcover. The location
C of the node is then compared to the editcover nodes and the closest
¢ node is returned. Once the match is found the ASCII command to add the
C 1link is written to the output AML. Later this aml is executed to
C add the links in ARCEDIT.
c
IF(ECOV.NE.'NONE')} THEN
c We match to the west edge of the ECOV
CALL PROC_COV(ECOV)
I=1
DO WHILE(I.LE.WCOUNT) .
CALL FIND_CLOSEST(WEST(I).X,EDITPT,EDIT_DIST,MATCH)
IF(MATCH) THEN
WRITE(LINK CHANNEL,104) EDITND(EDITPT).X,
X . EDITND{EDITET).Y
WRITE(LINK_CHANNEL,104) WEST(I).X,WEST(I).Y
ELSE e .
c’ - R
C We may have an error, If there is no node in 5 times the editdist this
C is a simple pseudo in the bprder arc
C

X=EDIT_DIST*5.0
CALL FIND CLOSEST(WEST(I).X,EDITPT,X,MATCH)
IF (MATCH) THEN

c
C CHECK IF THIS IS A PSEUDO-NODE
C
ICNT=1I5 PSEUDO(ECOV,WEST(I).X,WEST(I).Y)
IF(ICNT.EQ.2) THEN
WRITE(LINK*CHANNEL,IZO) WEST(I).X,WEST(I).Y
120 FORMAT ('&TYPE Location ',F14.4,',’,F14.4,' is a pseudo node’)

ELSE
C We have a fatal LINK error, we log the coordinates of all failures to
C the aux_channel, this eases the correcting process

C
C we have a badedge lets log the failure

c
I1F (AUX_CHANNEL.LT.0) THEN
CALL AEXIST{AUX PATH,IERR)
IF(IERR.EQ.0) THEN
CALL AAPPEN(AUX_CHANNEL,AUX_ PATH,IERR)
ELSE
CALL ACREAT(AUX CHANNEL,AUX PATH,IERR)
ENDIF
WRITE(AUX CHANNEL,222) EDITCOV
ENDIF -
WRITE (AUX_CHANNEL,223)
X *EAST ' ,WEST(I).X,WEST(I).Y
CALL MESRL(WEST(I).X,1)
CALL MESRL{WEST(I).Y,1)
CALL INFORM(’Fatal Link Error at location %1% , $%2%',-1)
BADEDGE=.TRUE.
ENDIF
ENDIF
ENDIF
I=1+1
END DO
ENDIF
C .
IF(WCOV.NE. 'NONE') THEN
Cc We match to the EAst edge of the WCOV
CALL PROC_COV(WCOV)
1=1
DO WHILE(I.LE.ECOUNT)
CALL FIND CLOSEST(EAST(I).X,EDITPT,EDIT DIST,MATCH)
IF(MATCH) THEN -
WRITE(LINK_CHANNEL,104) EDITND(EDITPT).X,
X EDITND{EDITPT).Y
WRITE(LINK_CHANNEL,104) EAST(I).X,EAST(I).Y
ELSE
C

C We may have an error, If there is no node in 5 times the editdist this

aonn

noOonn

(9}

[2XeNeXe!

anon

aonononan

5,150,295
41 42

is a simple pseudo in the border arc

X=EDIT DIST*5.0
CALL FIND _CLOSEST(EAST(I).X,EDITPT,X,MATCH)

IF (MATCH) ~THEN
CHECK IF THIS IS A PSEUDO NODE

ICNT=1IS P&EUDO(WCOV EAST(I).X,EAST(I).Y)
IF(ICNT.EQ.2) THEN
WRITE(LINK CHANNEL,120) EAST(I).X,EAST{(I).Y
ELSE
We have-a fatal LINK error, we log the coordinates of all failures to
the aux_channel, this eases the correcting process .

we have a badedge lets log the failure

IF (AUX_CHANNEL.LT.0) THEN
CALL AEXIST(AUX PATH,IERR)
IF(IERR.EQ.0) THEN
CALL AAPPEN(AUX_CHANNEL,AUX PATH,IERR)

ELSE
CALL ACREAT (AUX_CHANNEL, AUX_PATH,IERR)
ENDIF
WRITE(AUX_CHANNEL,222) EDITCOV
ENDIF
WRITE(AUX CHANNEL,223)
X 'WEST ',EAST(I).X,EAST(I).Y

CALL MESRL(EAST(I).X,1l)
CALL MESRL(EAST(1).Y,1)
CALL INFORM('Fatal Link Error at location %1% %2%',-1)
BADEDGE=, TRUE.
ENDIF
ENDIF
ENDIF
I=1I+1
END DO
ENDIF

IF(SCOV.NE.'NONE') THEN
We match to the NORTH edge of the scov
CALL PROC_COV(SCOV)
I=1 -
DO WHILE(I.LE.NCOUNT)
CALL FIND CLOSEST(NORTH(I).X,EDITPT, EDIT _DIST,MATCH)
IF (MATCH) THEN
WRITE(LINK_CHANNEL,104) EDITND(EDITPT).X,
X EDITND{(EDITPT).Y
WRITE(LINK_CHANNEL,104) NORTH(I).X,NORTH(I).Y
ELSE

We may have an error, If there is no node in 5 times the editdist this
is a simple pseudo in the border arc

X=EDIT DIST*5.0
CALL FIND _CLOSEST(NORTH(I).X,EDITPT,X,MATCH)
IF (MATCH) THEN

CHECK IF THIS IS A PSEUDO-NODE

ICNT=1IS PSEUDO(SCOV NORTH(I).X,NORTH(I).Y)
IF(ICNT.EQ.2) THEN
WRITE(LINK_CHANNEL,lZO) NORTH(I).X,NORTH(I).Y
ELSE
ecesl v
We have a fatal LINK errc’ we log the coordinates ¢. all failures to

‘the aux_channel, this eas.s the correcting process

we have a badedge lets log &he failure

IF (AUX_CHANNEL.LT.0) THEN
CALL AEXIST(AUX_PATH,IERR)
IF(IERR.EQ.0) THEN

5,150,295

43 44

CALL AAPPEN(AUX_ CHANNEL,AUX PATH,IERR)

ELSE T
CALL ACREAT{AUX_CHANNEL,AUX_PATH,IERR)
ENDIF

WRITE{AUX_CHANNEL,222) EDITCOV

ENDIF

WRITE(AUX_CHANNEL,223)
X *SOUTH 7 ,NORTH(I).X,NORTH(I).Y

CALL MESRL(NORTH(I).X,1l)

CALL MESRL(NORTH(I).Y,1l)
CALL INFORM('Fatal Link Error at location %1%

BADEDGE=.TRUE.

e %2%',-1)

ENDIF
ENDIF
ENDIF
I=I+1
END DO
ENDIF
o
IF(NCOV.NE.'NONE')} THEN
c We match to the SOUTH edge of the NCOV
CALL PROC_COV(NCOV)
I=1
DO WHILE(I.LE.SCOUNT)
CALL FIND CLOSEST(SOUTH(I).X,EDITPT,EDIT DTST, MRTCU}
IF(MRTCE) THEN -
WRITE(LINK CHANNEL,104) EDITND(EDITPT).X,
X EDITND(EDITPT).Y
WRITE(LINK_ CHANNEL,104) SOUTH(I).X,SOUTH(I).Y
ELSE -
C
C We may have an error, If there is no node in 5 times the editdist this
C is a simple pseudo in the border arc
C

X=EDIT DIST*5.0
CALL FIND CLOSEST(SOUTH(I).X,EDITPT,X,MATCH)

IF (MATCH) THEN

C
C CHECK IF THIS IS A PSEUDO-NODE
c
ICNT=IS PSEUDO(NCOV,SOUTH(I).X,SOUTH(I).Y)
IF(ICNT.EQ.2) THEN
WRITE(LINK_CHANNEL,lZO) SOUTH(I).X,SOUTH(I1).Y
ELSE
We have a fatal LINK error, we log the coordinates of all failures to
the aux_channel, this eases the correcting process
we have a badedge lets log the failure

naaon

IF (AUX_CHANNEL.LT.0) THEN
CALL AEXIST(AUX_ PATH,IERR)
IF(IERR.EQ.0) THEN

A UK
~:. CALL AAPPEN(AUX_CHANNEL,?""¥_ PATH, IERR)

L. JE
CALL ACREAT(AUX_ CHANNEL,AUX PATH,IERR)
ENDIF -
WRITE(AUX_CHANNEL,222) EDITCOV
ENDIF
WRITE(AUX_CHANNEL,223)
X 'NORTH *,SOUTH(I).X,SOUTH(I).Y

CALL MESRL(SOUTH(I).X,1)
CALL MESRL(SOQUTH(I).Y,1) -
CALL INFORM('Fatal Link Error at location %1% , %2%’,-1)
BADEDGE=.TRUE.
ENDIF
ENDIF
ENDIF
I=I+1
END DO
ENDIF

c
C CLOSE LINK CHANNEL
c

5,150,295
45 46
WRITE(LINK CHANNEL,105)

105 FORMAT(’9'7

IF({.NOT.BADEDGE) THEN
WRITE(LINK CHANNEL,106)

106 FORMAT('ADJUST’,/,'SEL ALL’,/,'DELETE’)

C
C
C

ELSE
we have a badedge lets log the failure

CALL AEXIST(ERROR_PATH, IERR)
IF(IERR.EQ.0) THEN
CALL AAPPEN(ERROR_CHANKNEL,ERRCK_PATH,IERR)
ELSE
CALL ACREAT(ERROR_CHANNEL,ERROR_PATH,IERR)
ENDIF -
WRITE(ERROR CHANNEL,108) EDITCOV

108 FORMAT(A1287

CALL ACLOSE({AUX_CHANNEL)

CALL ACLOSE(ERROR_CHANNEL)

END IF
WRITE(LINK_CHANNEL,107)

107 FORMAT{'SAVE’,/, 'QUIT')

(@]

NN OnN

Qo

nanNnOn [pXeXKe]

aoon

CALL ACLOSE (LINK_CHANNEL)
ERROR_PATH=’[]FATAL.ERR.I'
CALL ADELET(ERROR_PATH, IERR)
END

SUBROUTINE PROC_COV(COVER_PATH)

PROC_COV Version 1.0 TELEDYNE BROWN ENGINEERING
U.S ARMY STRATEGIC DEFENCE COMMAND

Purpose: This subroutine reads in the node tables for the supplied
coverage. The output is passed in the commons for NORTH
SOUTH EAST and WEST node tables. Only nodes for the -9999 arc

INTEGER*4 FROM_NODE.
INTEGER*4 TO_NODE
INTEGER*4 LPOLY
INTEGER*4 RPOLY \
INTEGER*4 NUM POINTS
RECORD /STRUCI/ POINTS(500)
END STRUCTURE
RECORD /STRUC4/ ARC_STRUCTURE
COMMON /ASTR/ ARC STRUCTURE,RECORD NUMBER,
X IN_CHANNEL -
REAL*4 BND(4)

Get pathnames for coverage and to ARC file

CALL ANAME({COVER_PATH,FULL PATH,0)
CALL ANAME(COVER_PATH,ARC_PATH,1)

Open Line Attribute file for reading, we need the MINORl code

CALL GETOPN(ITEM CHANNEL,FULL_PATH,2,'MINORLl',’ r,’ r,
X * IERR)
IF ({IERR.NE.O) THEN
CALL FATAL('UNABLE TO ACCESS INFO ITEM',-1)
ENDIF

ALL VERIFIED START MAIN PROCESS
Open the Arc file for when we need to read it.

CALL VOPEN(IN_CHANNEL,ARC_PATH,TYPE,1,2,IRECL,IERR)
IF{IERR.NE.0)} THEN
CALL FATAL('UNABLE TO OPEN ARC FILE FOR READING'’,-1)
ENDIF
Prepare to read through the attribute {ile. if we find a edge arc, recorc
nodes in proper north/south table or east/west table.

Qa0

OO0 [eKe Ny

ana

5,150,295
47 48
RECORD NUMBER = 1
EW_COUNT=0
NS COUNT=0
CALL GETVAL(ITEM_CHANNEL,RECORD_NUMBER,MINORl,IERR)
DO WHILE(IERR.EQ.O)
IF (MINORl.LT.O) THEN
CALL VREADR(IN CHANNEL,RECORD NUMBER,
X ARC_STRUCTURE.USER_ID,LBUFF,IERR)
Now lets determine slope of ARC, if it is from -45 to 45
it is NORTH/SOUTH, otherwise it is EAST/WEST

DELTAX = ARC STRUCTURE.POINTS(1l).X -

X ARC STRUCTURE.POINTS(ARC STRUCTURE.NUM_ POINTS).X
DELTAY = ARC STRUCTURE.POINTS(17.Y -
X ARC STRUCTURE.POINTS(ARC_STRUCTURE.NUM_ POINTS)
IF(DELTAX.EQ.0.0) THEN
SLOPE=90.0
ELSE
SLOPE=ATAND(DELTAY/DELTAX)
ENDIF

IF (SLOPE.GT.-45.0.AND.SLOPE.LT.45) THEN
NS COUNT=NS COUNT+1
NSTNS_COUNTY .X=ARC_STRUCTURE.POINTS(1).X
NS(NS_COUNT) .Y=ARC_STRUCTURE.POINTS(1).Y

NS COUNT-N£>COUNT+1 .

. - ,
&OAAﬁ:/‘LEE/LnsieeL" 3.GE.ARC_MAX) -
X . CALL FATAL ('1000 Border node llmlt exceeded’)
NS (NS COUNT)7X=

X ARC_STRUCTURE.POINTS (ARC_STRUCTURE.NUM POINTS).X
NS (NS_COUNT).Y=
X ARC_STRUCTURE.POINTS(ARC_STRUCTURE.NUM_ POINTS).Y
ELSE -

EW COUNT=EW COUNT+1

EW{EW_COUNT] .X=ARC_STRUCTURE.POINTS(1).
EW(EW_COUNT).Y=ARC STRUCTURE.POINTS(1).
EW_COUNT=EW_COUNT+1

IF (EW COUNT.GE.ARC MAX)

X CALL FATAL ('1000 Border node limit exceeded’)
EW(EW_COUNT) . X=
X ARC_STRUCTURE.POINTS(ARC_STRUCTURE.NUM_POINTS).
EW(EW_COUNT).Y=
X ARC_STRUCTURE.POINTS(ARC_ STRUCTURE . NUM _POINTS).Y
ENDIF™
ENDIF

RECORD_NUMBER=RECORD NUMBER+1
CALL GETVAL{ITEM_ CHANNEL,RECORD NUMBER,MINOR1, IERR)
END DO

CALL VCLOSE(IN_CHANNEL)

CALL GETCLS(ITEM_CHANNEL)

Now lets separate into individual North/South/East/West tables

ECOUNT=0
WCOUNT=0
SCOUNT=0
NCOUNT=0

Find mid_X and Mid_Y
LEAST AND MAX

CALL BOXGET(COVER_PATH,BND,IERR)
MID X=(BND{1)+BND{3))/2.0
MID_ Y=(BND(2)+BND(4))}/2.0

Now we have the mid-points we can separate into North South East West

DO 30 I=1,EW_COUNT

IF (EW(I) “X.GT.MID _X) THEN
ECOUNT=ECOUNT+1™
EAST(ECOUNT) .X=EW(I).X
EAST(ECOUNT) .Y=EW(I).Y

ELSE
WCOUNT=WCOUNT+1
WEST(WCOUNT) .X=EW(I).X

5,150,295
49 50

WEST(WCOUNT) .Y=EW(I).Y
ENDIF
30 CONTINUE

C
¢ Find North and South
C
DO 40 I=1,NS COUNT
IF (NS(I) TY.GT.MID Y) THEN
NCOUNT=NCOUNT+1"™ o lgeeitim Sl
are read in. ~The following is a summary’” -lgogithm.
1: Open and read through the attribute file, If the arc is coded
less than 0 it is a bprder arc

2: Read in the corresponding arcs and record the nodes. If the slope
of the line between the nodes is between -45 and 45 degrees the
nodes belong to either the north or south edges and are saved in
NS table : otherwise the arc is on the east or west edge and is
‘recorded in the EW_table.

3: The next step separates the two tables into the four cardinal
direction edges. This is. done by finding the midpoint and saying
all points above that point are NORTH all below SOUTH etc.

Declare structures and commons. Commons are required because
FORTRAN does not honor the normal rules of scope for internal
subroutines.

NNONAaAONNON0ONOANANONON

INTEGER*4 I,T,ITEM CHANNEL

INTEGER*4 LBUFF,TYPE,IRECL,IERR

CHARACTER*128 COVER_PATH,ARC_PATH,FULL_ PATH

REAL*4 MINOR1,SLOPE,DELTAX,DELTAY,LEAST,MAX,MID X,MID VY
REAL*4 X,Y - -
LOGICAL*4 EXST

Node table common, this table is used to gather the nodes that are
EAST/WEST, NORTH/SOUTH oriented. Once this group is collected the
data is moved to four separate tables for EAST, WEST, NORTH and SOUTH
edges.

[eXeNeXeEeRe Kp

INTEGER*4 ECOUNT,WCOUNT,NCOUNT, SCOUNT

STRUCTURE /STRUC3/

REAL*4 X

REAL*4 Y

END STRUCTURE

INTEGER*2 ARC_MAX

PARAMETER (ARC MAX=1000)

RECORD /STRUC3/ EAST(ARC_MAX) v

RECORD /STRUC3/ WEST(ARC_. "MAX)

RECORD /STRUC3/ NORTH(ARC MAX)

RECORD /STRUC3/ SOUTH(ARC MAX)

COMMON /COVS/ EAST,WEST, NORTH, SOUTH, ECOUNT, WCOUNT , NCOUNT,
X SCOUNT

INTEGER*4 EW COUNT,NS_COUNT
STRUCTURE /STRUCl/

REAL*4 X

REAL*4 Y :

END STRUCTURE

RECORD /STRUCl/ EW(ARC_MAX)
RECORD /STRUCl/ NS(ARC_| “MAX)

Arc structure, This structure is used to store the arcs that are
read.

annan

INTEGER*4 RECORD NUMBER,IN_CHANNEL
STRUCTURE /STRUC4/
INTEGER*4 USER_ID

l}\ o I—‘S"
NORTH(NCOUNT) ~*=NS(1I).X
NORTH(NCOUNT) 5=NS(I).Y 7S
"ELSE" Ny
SCOUNT=SCOUNT+1,

SOUTH(SCOUNT) .X=NS(I).X

AOOOOO0O00O0000N

(=)

5,150,295
51 52
SOUTH(SCOUNT) .¥=NS(I).Y
ENDIF
CONTINUE

ALL SEPARATED

Because we recorded both the from node and tnode, we need to eliminate
those nodes which are duplicated.

Pickup current node as Good x,y If we find a duplicate we take
the last node and place it at the current location. Then decrement
the node count by 1 and continue. We do not need to check the moved
node as their can only be one duplicate

I=1

DO WHILE (I.LT.ECOUNT)
X=EAST(I).X
Y=EAST(I).Y
T=I+1 .
DO WHILE{(T.LE.ECOUNT)

IF (EAST(T).Y.EQ.Y) THEN
EAST(T) .X=EAST(ECOUNT).X
EAST(T).Y=EAST{(ECOUNT).Y
T=ECOUNT
ECOUNT=ECOUNT-1
ENDIF

T=T+1

END DO

I=I+1
END DO

I=1
DO WHILE (I.LT.WCOUNT)
X=WEST(I).X
Y=WEST(I).Y
T=I+1
DO WHILE(T.LE.WCOUNT)
JF (WEST(T).Y.EQ.Y) THEN
WEST(T) . X=WEST{(WCOUNT) .X
WEST(T) .Y=WEST{WCOUNT).Y
T=WCOUNT
WCOUNT=WCOUNT-1
ENDIF
T=T+1
END DO
I=I+1
END DO

I=1

DO WHILE (I.LT.NCOUNT)
X=NORTH(I).X
Y=NORTH(I).Y
T=1+1
DO WHILE(T.LE.NCOUNT)

X IEQX
IgﬂégggI§L$§.§;§%3%))THEN Ao id
> Npe TW NORTH (T)2X. ..ORE (NCOUNT) . X
S * NORTH(T) .Y=NORTH (NCOUNT) .Y
T=NCOUNT
NCOUNT=NCOUNT-1
ENDIF
T=T+1
END DO
I=I+1
END DO

I=1
DO WHILE (I.LT.SCOUNT)
X=SOUTH(I).X
Y=SOUTH(I).Y
T=I+1
DO WHILE(T.LE.SCOUNT)
IF (SOUTH(T).X.EQ.X) THEN
SOUTH(T) .X=SOUTH(SCOUNT) .X

OOO0n (@]

[eNeXe!

anNnnOn

c

5,150,295
53 54
SOUTH(T).Y=SOUTH({SCOUNT).Y
T=SCOUNT
SCOUNT=SCOUNT-1
ENDIF
T=T+1
END DO
I=I+1
END DO
END

SUBROUTINE FIND_CLOSEST(POINT,PT,EDIT DIST,MATCH)

This routine locates the closest editnd that is within edit dist of the
supplied point. If a match is fount PT is set to the index and MATCHE is
set to true

Start

INTEGER*2 ARC_MAX

PARAMETER {ARC_MAX=1000) _

REAL*4 EDIT DIST,DIST,SHORT LENGTH,MINX,MAXX,DELTAX,DELTAY
INTEGER*4 PT,LOW,HIGH,I,SHORT INDEX

LOGICAL*4 MATCH -

STRUCTURE /STRUC1/

REAL*4 X

REAL*4 Y

END STRUCTURE

RECORD /STRUC1l/ POINT

INTEGER*4 EDITCNT

RECORD /STRUC1/ EDITND(ARC_MAX)

COMMON /EDCOV,/ EDITND,EDITCNT

by locating bounds of the nodes to search

MINX=POINT.X-EDIT DIST
MAXX=POINT.X+EDIT DIST

FIND THE LOW END OF EDITND to search. We process sequentially from

there

LOW=1
HIGH=EDITCNT

PT=INT(FLOAT (HIGH+Do% cell
- +EOR) /2.0)
DO WHILE(HIGH.GT €™ - 1L0W
IF (EDITND(PT).X GE.MINX) THEN
HIGH=PT-1
ELSE
LOW=PT+1
END IF
PT=INT(FLOAT(HIGH+LOW)/2.0)
END DO
IF(PT.GT.1) PT=PT-1
LOW=PT

)

C now search through node table and find closest node

[o

c

"DELTAX= POINT.X-EDITND(PT).X

DELTAY= POINT.Y-EDITND(PT).Y
SHORT_LENGTH=SQRT(DELTAX**2 + DELTAY**2)
SHORT INDEX=PT
I=PT+1
DO WHILE(EDITND(I).X.LE.MAXX.AND.I.LE.EDITCNT)
DELTAX= POINT.X-EDITND(I).X
DELTAY= POINT.Y-EDITND(I).Y
DIST=SQRT{ DELTAX**2 + DELTAY*%*2)
IF(DIST.LT.SHORT_LENGTH) THEN
SHORT_INDEX=I
SHORT_LENGTH=DIST
ENDIF
I=I+1
END DO

C WE HAVE SHORTEST LENGTH BUT IS IT SHORT ENOUGH

C

Ao 0Onn

s NoEsNe!

a00

[eNeKe!

a0

1S_P

Purp

5,150,295)
35 56
PT=SHORT INDEX
1F(SHORT LENGTH.LE.EDIT DJST} THEM
MATCH=.TRUE.

ELSE

MATCH=.FALSE.

ENDIF
RETURN
END ’
INTEGER*4 FUNCTION IS_PSEUDO(COVER_PATH,USERX,USERY)
SEUDO Version 1.0 TELEDYNE BROWN ENGINEERING .

U.S ARMY STRATEGIC DEFENCE COMMAND

ose: This subroutine tests whether the given location is a pseudo-r

This an expensive test and is only performed if the provided
location is about to cause a fatal autcedge error. We simply
open the arc file testing the end nodes to see if they are the
same location. If we have three or more arcs, we got trouble.
Two arcs is a pseudo node. We cant have dangles as DLGs have
borders around the edges.

INTEGER*4 I,CNT,ITEM_CHANNEL

INTEGER*4 LBUFF,TYPE,IRECL,IERR

CHARACTER*128 COVER_PATH,ARC_PATH,FULL_PATH

REAL*4 USERX,USERY

STRUCTURE /STRUC1l/

REAL*4 X

REAL*4 Y

END STRUCTURE

Arc structure, This structure is used to store the arcs that are

" read.

Get pa

Open

L

INTEGER*4 RECORD NUMBER,IN CHANNEL
STRUCTURE /STRUCY/ -
INTEGER*4 USER ID

INTEGER*4 FROM_NODE

INTEGER*4 TO NODE

INTEGER*4 LPOLY

INTEGER*4{ RPOLY

INTEGER*4 NUM POINTS

RECORD /STRUCI/ POINTS(500)
END STRUCTURE

RECORD /STRUC4/ ARC_STRUCTURE

thnames for coverage and to ARC file

CNT = 0
CALL ANAME(COVER PATH,FULL_ PATH,0)
CALL ANAME(COVER_PATH,ARC PATH,1)

the Arc file for when we need to read it.

CALL VOPEN(IN_CHANNEL,ARC_PATH,TYPE,1,2,IRECL,IERR)
IF(IERR.NE.O) THEN
CALL FATAL('UNABLE TO OPEN ARC FILE FOR READING',-1)
ENDIF

CALL VREAD(IN_CHANNEL,RECORD NUMBER,
ARC_STRUCTURETUSEK 1D,LBUFF, IERR)
DO WHILE(IERR.EQ.O) -
Now lets check nodes.

IF ((ARC_STRUCTURE.POINTS(1).X.EQ.USERX.AND.,
ARC_STRUCTURE.POINTS(1).Y.EQ.USERY).OR.
(ARC_STRUCTURE.POINTS(ARC_STRUCTURE.NUM POINTS).X
.EQ.USERX.AND. -
ARC_STRUCTURE.POINTS{ARC_STRUCTURE.NUM POINTS).Y

.EQ.USERY)) CNT = CNT ¥ 1 -
CALL VREAD(IN_ CHANNEL,RECORD NUMBER,
ARC_STRUCTURE.USER_ID,LBUFF,IERR)
END DO

5,150,295 -
57 58
CALL VCLOSE(IN_CHANNEL)
© 1S_PSEUDO=CNT

" END \/MM] /3—& “ ﬁﬁowﬂ/ 49-.:, /L,L
«2BOS_vov, hsize,vsize,hnum,™um, 0CV i) S
7* FIX_JOIN.AML VERSH - 351 VERSIon TELEDYNE " *#@WN ENGINEERING
/* - Copywrite 1989 - Teledyne Brown Engineering.

*)
j* - VERSION 1.0
/*
/*

/* THIS PROGRAM ENSURES ALL ATTRIBUTE FILES HAVE THE SAME NUMBER OF MAJOR
/* MINOR CODES.

/* VERSION 2.0

/* Change: Program modified so that only one ARC ADDITEM is executed.
/* The rest is accomplished by pat file modification
/* -

/* Change: Program modified to combine fix att and Join into one
/* single aml

S* Version 2.1

/* Change: Program modified so that attribute files with more
/* than 7 major minor codes wont distub additem

/% '>Version 2.2

/* Change: Combined Fix_aat and Join into a single AML

/% Version 3.0
/* Change: Combined Fix_aat pass and verification pass.
/* Version 3.1

/* Change: Modified to allow parameter arguments. This allows this
/* aml to be called by other amls. Additionally removed use
/* of global variables.

/* o Version 4.0

/* Change: Modified so that FIX JOIN checks the DLGLINK.LOG file to see
/* if one of its coverages is in the fatal link log file. 1If
/* it is, we set .LINK_ERROR to true and exit explaining why

/* we are failing.

/* Start a watch file, If one has not already been activated by the user
&IF [Show &watch] = &OFF &then &do
&type Activating Watch file fix_join.WAT
swatch fix_join.WAT &append
&end
&else &type Using already activated watch [Show &watch]
&TYPE £
stype FIX JOIN version 4.0
&type \
stype Copywrite 1989 -~ Teledyne Brown Engineering
&type
&typ This program will correct the attribute files for the coverages and
&typ optionally clean any coverage lacking correct toptology. Finally
styp the coverages are appended into a single output coverage.
styp :

5,150,295
59 60
&IF [NULL %cov%] &THEN &S cov := [Response 'Enter South Eastern Coverage Nar
&TYPE
&if * [Exists %cov% —cover] &then &DO
&TYPE %cov% does not exist
&end
&s covTYPE := [substr %cov% [length %cov%] 1}
&s .ctype := [substr %covt% 1 1]
&s dd := [substr [before %covi% N] 2]}
&s fract := [substr {[after %cov% NJ] 1 1}
&select %fracts
&when 0,5
&s fract := %$fract%00
&when 1,6
&s fract := $fract%25
s&when 2,7
&s fract := %fract%50
&when 3,8
&s fract := $fract%75
send
&s dd lat := %dd%.%fract%
&s dd := [substr [before [after %cov%® N} W] 2]

&s fract := [substr [after %cov% W] 1 1]
&select %fract%
&when 0,5
&s fract := %fract%00
&when 1,6
&s fract := %fract%25
&when 2,7
&s fract := %fract%50
&when 3,8
&s fract := %$fracts75
&end
&s dd long := %dd%.%fract%

/* We have the DD of the corner
/* We now have command and coverage type
* Get remaining User INFO
&IF [NULL %hsize%] &THEN &s hsize := [Response 'Enter Horizontal size of co
e in Decimal Degrees’ .125]
&IF [NULL %vsize%] &THEN &s vsize := [Response ’'Enter Vertical size of cove:
in Decimal Degrees’ .125])
&type
&IF [?ULL $hnum%}] &THEN &s hnum := [Response 'Enter number of Horizontal Cow
es’ 8
&IF [NULL %vnum%] &THEN &s vnum :
" 4]
&type
&S PATH := [DIR [PATHNAME *]]
&S END := [LENGTH %PATH%] - 1
&S PATH := [QUOTE [SUBSTR %PATH% 1 %ENDY]]

[Response 'Enter number of Vertical Cover

&IF [NULL %o0cv%] &THEN &s OCV := [Response 'Enter Appended Output Coverage N
]

&type

&type FIX JOIN started at [DATE -VFULL]

&type

&S5 -aat max :=
&S pat max :=
&select %.ctyp
&when H
&do .
&s potion := POINT
&if %covTYPES% A &then &do

1
1
e%

&s potion := NET
&s pat_max := 5
&s aat max := {4

&end
&1if %covTYPES%
&if %covTYPE%
&end
&when R
&do
&s potion := POINT
&if $covTYPE% = A &then &do
&s potion := LINE
&s aat max := 5
&end

N &then &s pat_max := 2
P &then &s pat_max := 2

5,150,295

61 62
&if %covTYPE% = N &then &s pat_max := 1
&if %covTYPE% = P &then &s pat_max := 1
&end
&when M
&do
&s potion := POINT
&if %covTYPE% = A &then &do
&s potion := LINE
&s aat max == 2
send
&if %covTYPE% = N &then &s pat_max := 1
&if %covTYPE% = P &then &s pat_max := 1
send
&when T
&do
&s potion := POINT
&if %covTYPE% = A &then &do
&s potion := LINE
&s aat_max := 4
&end
&if %covTIYPE% = N &then &s pat_max := 1
&if %covTYPE% = P &then &s pat_max := 1
&end
&end

/* Check to see if we have a DLGLINK.LOG file to check and if we are an A
/* type coverage.

&s .link error := .FALSE.
&if [Exists DLGLINK.LOG —~FILE] AND %covtype% = A &then &do

&s unit := [Open DLGLINK.LOG STAT -READ]}
&S tcov := [Read %unit% stat]
&do &while %stat% = 0 AND " %.link error%
&s dd := [substr {before %tcov% N] 2]
&s fract := [substr [after %tcov% N] 1 11}
&select %fracts
&when 0,5
&s fract := %fract%00
&when 1,6
&s tract := %¥fract%25
&when 2,7 .
&s fract := %fr..£%50 Lo\
&when 3,8 fedcact fo
&s fract := %fract%75
&end
&s tlat := %dd%.%fract%
&s dd := [substr [before [after %tcovs N] W] 2]
&s fract := [substr [after %tcovs W] 1 1}
&select %fract$
swhen 0,5
&s fract := %fract%00
&when 1,6
&s fract := %fract%25
&when 2,7
&s fract := %fract%50
&when 3,8
&s fract := %fracti%75
&end

&s tlong := %dd%.%fract%

&s dlon := %tlong% -~ %dd longs

&s dlat := 3%tlat% - 3dd_Tats

&if %dlon% 1t 1 and %dlon% ge 0 and %dlat% 1t 0.5 and %dlats ge 0 &the

&s .link_error := .TRUE.
&type Failing FIX_JOIN because a coverage failed Auto Edge
&s stat := [CLOSE %UNIT%]
&return
&end
&5 tcov := [Read %unit% stat]
&end
&s stat := [CLOSE %UNIT%]
&end

/* we have set all info lets fix aat files

5,150,295
63 64

/* pat max contains pat major minor count
/* aat max conatains aat major minor count

&s first .TRUE.
&s found
&s pover

&s aover

oo

0

0 .

0

/* HERE is where we loop back if we find a coverage with more than we

/* currently handle
&label once more

&5 r := %hnum% - 1
&s ¢ := %vnum% - 1
&do x := 0 &to %r%
&do y := 0 &to 3%c%
&s t lat := %dd lat% + (%y% * %vsize%)
&s t long := %dd long% + (%x% * %hsize%)

&call cov_name
&TYPE COV %tcov%
5if [Exists %tcov% -COVER] &then &do
&s found := %foundi® + 1
&if %potion% = NET &then &do
&§if " [exists %tcovi -clean] &then &do
clean %$tcov% # 12.5 12.5 poly
selu Jo teevy Go¥
&if ° [exists %t~ow% -line] &then &do
build %tcovy .ne -
&end ﬁctc;\x Tire
&end ¥)
&if ~ [Exists %tcov% -clean) or * [EXISTs %$tcov% -%potion%] &then ¢
&if %$potion% = NET &then CLEAN %tcovi # 25 12.5 POLY
&ELSE BUILD %tcov% %potion%
&end
&describe %tcovy
&select %potion%
&when NET
&do
&s start := (%dsc$pat_bytes%t -~ 16) / 12
/* start contains the number of major minor
/* codes
&if %start% > %pat_max% &then &do
&s pover := 1
&type %tcov® has %start$% attributes
&s pat_max := %start}
&end
&if %start% < %pat max$% &then &call fix pat
&s start := (%dsc$aat_bytes® - 28) / I2
/* start contains the number of major minor

/* codes
&IF %¥start% > %aat_max% &then &do
&s aover := 1

&type %$tcovt has %start% line attributes
&5 aat_max := ¥starts
&end
&if %start?® < %aat max% &then &call fix aat
&end - -
&when POINT
&do
&s start := (%dsc$xat bytest - 16) / 12
/* start contains the number of major minor
/* codes
&if %start% > %pat max% &then &do
&s pover := 1
&type %tcov% has %start% attributes
&s pat _max := %¥start}

&end
&if %$start?® < %pat_max% &then &call fix pat
&end -
&when LINE
&do
&s start := (%dsc$aat bytes® - 28) / 12

/* start contains the number of major minor

5,150,295
6
/* codes
sif %start% > %aat_max% &then &do
&s aover := 1
stype %tcov% has %start% line attributes

(7]]

66

&s aat max := %starts%
send

sif %start% < %aat_max% &then s&call fix aat

send

send
send
&end
&end

sif. $first% AND (3%AOVER% > 0 OR %$POVER% > O) &then &dn
&s first := .FALSE.
&TYPE *#*%x%kx**x PASS 2 kkkx kK
&goto once_more)
&end

/* READY TO JOIN

&if %found% eq 0 &then &do
&type No coverages to be APPENDED !llllilll
&return
&end

APPEND %0CV% %potion% ALL

&s r := %hnum% - 1
&s c := %vnum% - 1
&do := 0 &to %r%

X =
&do y := 0 &to %c%
* check coverages and check for proper topclogy
&s t lat := %dd lat% + (%Y% * %vsize%)
&s t long := 3%dd_long% + (%x% * %hsizet)
&call cov _name
&If [Exists %tcov$s -coverage] &then &do
&type Coverage %tcov}
[UNQUOTE $%tcov%)
&END
&end
&end
&TYPE END
[Unguote 'END']

~N

&type
&type FIX_JOIN completed at [DATE -VFULL]
‘ttvpe

stype Watch file [Show &watch] still active ...
sreturn

sroutine cov name)

&s fract := [Substr [After %t lat% .] 1 1]

&if [quote sfracts] < [guote U] &then &s fract := 0

&s tcov := %.ctype%[before %t _lat% .]N%fracts
&s fract := [Substr [After %t long% .] 1 1]
sif [quote %fract%] < [quote 0] &then &s fract := 0

&s tcov := $tcovi|before %t_long% .]Wi¥fract¥¥covIYPE%
&return
&end

&routine fix pat
&s size := (%pat_max% - ystarts) * 12
/* size contains number of Bytes to add

ADDITEM $tcov%.PAT %tcov%.PAT T$IT $SIZE% %SIZE% C
&SETCHAR &FUNCTION § ?

&data arc info
ARC

SEL %tcov%.PAT
EXT

$#UNQUOTE 'Y'"?
#UNQUOTE " '?
SEL %tcov%.PAT
MODIFY

5,150,295
67
N

#UNQUOTE 'L TSIT'?

$UNQUOTE *'D'?

$UNQUOTE 'I'?

&DO &WHILE %START% < $pat max%
&5 START := %START% + 1

MAJOR%START%,6,1

MINOR%STARTS%,6,1

&END
$UNQUOTE ' 7
#UNQUOTE ' '?
EXT

#UNQUOTE %PATH%?.%tcov%]PAT.
SEL %tcov%.PAT

STOP STOP

&END

&SETCHAR &FUNCTION []
&RETURN

&routine fix_aat
&s size := (%aat_max% - %start%) * 12
/* size contains number of Bytes to add

ADDITEM %$tcov%.AAT %tcov%.AAT TSIT %SIZE% $SIZE% C
&SETCHAR &FUNCTION # 2

&data arc info

ARC

SEL %tcov%.AAT
EXT

$#UNQUOTE 'Y'?
$#UNQUOTE " '?
SEL %tcov%.AAT
MODIFY

N

$UNQUOTE 'L TSIT'?

$UNQUOTE ’'D’?

#UNQUOTE 'I'?

&DO &WHILE $%$STARTS% < %aat max%
&S START := %START% + 1

MAJOR%STARTS%,6,1

MINOR%STARTS,6,1

&END
$UNQUOTE ' '?

_ $UNQUOTE ' '?
EXT

$UNQUOTE %PATH%?.%tcov%]AAT.
SEL %tcov%.AAT

68

STOP STOP
&END
&SETCHAR &FUNCTION []
&RETURN
DLG_CONVERSION Algorithm
1 Set Error handling to fail.
2 Get User run time parameters.
" base_name <= file to convert
'start_version <= starting file number to convert.
end version <= last file number to convert.
3 ‘Display run time parameters.
4 ' See if user parameters are acceptable. GOTO 2 if
parameters are not acceptable.
RE-I Get workspace pathname parameters. Each type of

" layer is stored in a separate workspace.
enhances performance.

7.2

7.2.4.1
7.2.4.2

7.2.5
7.2.5.1
7.2.5.2
7.2.6
7.2.6.1
7.2.6.2
7.2.7
7.2.7.1
7.2.7.1.1
7.2.7.2
7.2.7.2.1

7.2.7.2.2
7.2.7.2.3
7.2.8

7.2.9

2
69 5,150,295

Display workspaces. If not acceptable GOTO S

70

Process each DLG file from start_version to
end version. Do while start_version LE end_version

Call read dlg headder. This routine reads

through the DIZ £ilc determining thne type of
layer, UTM zone, and latitude longitude
coordinates of the southeast corner of the

coverage. This information is used to generate

the coverage name.

If coverage has not already been converted and
no error was encountered during read_dlg_header
then do.

Kill temporary coverages.

Use DLGARCC command to produce coverages: TSA,
TSN, and TSP.

If Polygon topology exists. (T$A.PCODE exists)
Build T$A with polygon option.
JOINITEM TSA.PAT with T$A.PCO§E

If Line topology exi§ts. (TSA.ACODE exists)

. Build T$A with line option.
JéINITEM T$SA.AAT with TSA.ACODE

If Point topoiogy exists. (TSP.XCODE e#ists)
Build T$P with point option.
JOIﬁITEM TSP.PAT with T$P.XCODE
If Node topology exists. (T$N.NCODE.egists)
Build TSN .with point option.
.JOINITEM TSN.PAT with T$N.NCODE
I1f coverage is a hydrology coverage
If cover lacks polygon topology
Bui;d with polygon option.
If cover lacks line topology
Build with line optioh.

Add MAJOR1 and MINORl attribute codes to
line attribuce file.

. Code all lines as -9999 to indicate lines
- are border arcs.

Remove temporary DLG attribute files:
TSA.PCODE, T$A .ACODE, TSP .XCODE andT$N.XOCDE.

If TS$A coverage exists.

5,150,295
71 72

7.2.9.1 Project coverage to user output projection
system and call T$SALB.

7.2.10 If T$P coverage exists.

7.2.10.1 Project coverage to user output projection
system and store in approprilate workspace
with file naming conventions.

7.2.11 If TSN coverage exists.

7.2.11.1 Project coverage to user output projection
system and store in appropriate workspace

: with file naming conventions.
7.2.12 If TSALB coverage exists.

7.2.12.1 Re-build topology.

7.2.12.2 Set fuzzy tolerance default values.

7.2.12.3 Copy into user workspace with naming
. conventions.

7.3 starp_version <= start;yersion + 1

7.4 End do While startnyeréion LE end_version

8 ~ End

Routine Read DLG_HEADER

1 Create DLG file name by concatenating Base_name and
start_version.

2 If DLG_FILE does not exist.
2.1 Return with failure status.
5‘.' ‘Open DLG_FILE for reading

4 Read line 2 columns 53-60. This contains map
: scale. This is used for setting tolerances.

5 Read line 4 columns 13-18. This contains UTM Zone
. .. to use for -projection.

6 Read line 14. This contains SE corner of maps
Latitude and Longitude coordinates.

7 Contruct 10 character caverage name base using LAT,
" LONG coordinates. ex (103W036N2Z)

8 Read line 15. This contalns the coverage type.
This is used to set a single character of the
naming convention indicating map type.

H = Hydrology . R = Roads
7 = Trains (railroads) M = Misc Transportation

9 Output coverage name equals
WORKSPACE || layer type || Geographic location

(ex. [.HYDROJH103WO36N2)
110 Close DLG file.

11 ' ~ Return with succesful status.

- 5,150,295 74
DLGLINK.AML '

1 Open Watch File

2 Accept user run time parameters
cov <~ Soth east Coverage
HSIZE <- Horizontal coverage size
VSIZE <- Vertical coverage size

HNUM <~ Number of horizontal coverages
VNUM <~ Number of vertical coverages

3 Parse COV, determining layer_ type, Latitude, and
Longitude.

4 DO x = 0 to HNUM by 2

4.1 ‘ DO y = 0 to VNUM by 2

4.1.1 T_LAT <- LATITUDE + (Y * VSIZE)

4.1.2 T_LONG <- LONGITUDE + (X * HSIZE)

4.1.3 Generate editcoverage from'T LAT and T_LONG

4.1.4 IF exist editcoverage '

4.1.4.1 Generate back coverage names

ecov <- coverage to east of editcov
wcov <- coverage to west of editcov
ncov <- coverage to north of editcov
- scov <- coverage to south of editcov

4.1.4.2 If exist filg FATA.ERROR ... delete it

4.1.4.3 Create file FATAL.ERROR, if this file is
not gone when autolink fortran program
completes, a fatal error was encountered.

4.1.4.4 Execute AUTO_LINK FORTRAN program. It will
create a program which when executed will
call ARCEDIT, set-up adjustment links and

AUTOLINK.

4.1.4.5 If exists FATAL.ERROR, report error and
fail.

4.1.5 end FOR y = 0 to VNUM

4.2 end FOR x = 0 to HNUM

5 Repeat steps 4 through 4.2\éxcept change do loops

Do x = 1 to HNUM by 2
Do y = 1 to VNUM by 2

This will edgematch the remaining diagonal
coverages needed to edgematch an entire block.

6 Close watch file

7 end
AUTO_LINK.FOR

1 ' Initialize RARC/INFO subsystem

2 Read user parameters
EDITCOV <~ Edit coverage
ECOV <- East border coverage
WCov <~ West border coverage
NCOV <- North border coverage

scov <- South border coverage

5,150,295

12

3 Call PROC_COV (EDITCOV) /* Read editcov nozgs

4 Sort EDITCOV Nodes in X,Y order

S BAD_EDGE <- .FALSE. /* If bad edge becomes true,

the coverage can not be
autolinked.

6 Create bas;c AML program. 'This includes cammands
necessary to start ARCEDIT, set-up editcov, set
editfeature, and enter ADD for links.

7 If ECOV n-e "NONE" . 3

7.1 CALL PROC_COV (ECOV)

7.2 DO i =1 to nuhber of nodes on west edge

7.2.1 CALL'FIND_CLOSEST (que(i)’

7.2.2 if these match then Write LINK to AML file

7.2.3 ELSE

7.2.3.1 chaﬁge match distance to 5 * editdistance

7.2.3.2 CALL FIND CLOSEST (Node (i))

7.2.3.3 if these match then BAD_EDGE = .TRUE.

7.2.3.4 ELSE Write ;ink to AML File

7.3 End do loop

8 \\ Repeat step 7 through 7.3 for WCOV

9 . Repeat steps 7 through 7.3 for NCOV

10 Repeat steps 7 through 7.3 for SCOV

11 1f Bad_Edge = .FALSE.

11.1 Write commands to adjust and save to AML file

12 Else

12.1 Log coverage not auto-edgematched

12.2 Write commands save and quit to AML file

13 Close AML file'

14 . END

"Subroutines
PROC_COV " (COVER)

1 Open and read througﬁ AAT attribute file, If the
arc is coded less than 0, it 1s a border arc.

2 Read the corréSpondiné arcs in and record the
nodes.

3 Generate coordinates for center of coverage from

then coverage BND.

5,150,295
77 ? 78

4 Using the arcs SLOPE as well as coverage center
point, divide the arcs into four classes: EAST,
WEST, NORTH, and SOUTH edges.

5 Close all files

6 RETURN

FIND_CLOSEST(NODE,MNODE,EDITDIST,MATCH)

1 Searches the editcoverage node table. The node

: with the closest distance is assigued to MNODE. If
no match is found MATCH is set to FALSE otherwise
it is set to true. Search is using a binary
search.

v
2 RETURN
Fix_Join Algorithm

1 Open watch file.

2 Obtain name of Soptheastern coverage.

3 Parse coveragé name to obtain: Layer_ type, latitude
longitude location, and coverage type.

q Get user run time parameters.

Hsize <= Horizontal coverage size.
Vsize <= Vertical coverage size

Hnum <= Number of horizontal coverages.
Vnum <= Number of vertical coverages.

5 Set default number of MAJOR, MINOR code pairs for
attribute files. These values vary depending on
coverage type and layer type.

6 Repeat loop until all attribute files have same
number of MAJOR,MINOR code pairs.

6.1 r <= hnum -1, ¢ <= voum - 1

6.2 Do x = 0 to.R

6.2.1 Doy =0 toC

6.2.1.1 T lat <= latitude of SE corner + (y*vsize)

T _long <= Longitude of SE corner + x*hsize
6.2.1.2 Generate coverage name from T lat and
T_long.

6.2.1.3 If coverage exists as a Network coverage.

6.2.1.3.1 If coverage is not clean

6.2.1.3.1.1 Clean with polygon option -

6.2.1.3.2 If coverage lacks line topology

6.2.1.3.2.1 Clean with Line option

6.2.1.4

Describe coverage

5,150,295
79 80

6.2.1.5 Take number of attibute bytes, subtract 16
and divide by 12 for PAT files. Subtract
28 for AAT files. This provides the number
of MAJOR MINOR codes in the coverage.

6.2.1.6 If number of attributes does not match
PAT_MAX or AAT MAX

6.2.1.6.1 Add a single item for 2ll missing
attribute pairs. A single ADDITEM .
command is used to minimize I/0 overhead.

6.2.1.6.2 Use INFO database manager to change the
single added- item into the required
number of MAJOR, MINOR codes.

6.2.1.7 End for Do loop ¥ = 0 to C
€.2.2 End for Do loop X = 0 to R
6.3 If any attribte files had more attribute pairs

than the default, up PAT MAX and AAT MAX to
higher amount.

6.4 End Repeat until all attribute files uniform.
7 APPEND into a single output éoverage.

8 Do X = 0 to R t

8.1 DoY =0 toC

8;1.1 T _lat <= latitude of SE corner + (y*vsize)

T_long <= Longitude of SE corner + x*hsize

8.1.2 Generate coverage name from T_lat and T_long.
8.1.3 If coverage exists

8.1.3.1 Pass coverage namevto APPEND

8.1.4 End for Do loop ¥ = 0 to C
8.2 End for Do Locp X = 0 to R

9 End

5,150,295

81

1 claim:

1. A computerized method of producing a map from
a plurality of small map sections, said small map sections
being in digital line graph format, the method compris-
ing:

(a) receiving data corresponding to geographical
features on the earth’s surface as raw map data, said
raw map data relating to small sections of the
earth’s surface in digital line graph format;

(b) locating the north, south, east and west border
arcs in said raw map data, wherein said border arcs
include nodes along the border arc;

(c) converting said raw map data into a format which
identifies the latitude and longitudinal coordinates,
and a type of map coverage;

(d) edgematching each node along the border arc of
one map section to its adjacent map sections by
matching the nodes along the border arc with the
most closely corresponding node along an adjacent
border arc, within a predetermined tolerance dis-
tance;

(€) snapping said node of said one map section to said
most closely corresponding node along said adja-
cent border arc;

(f) repeating steps (b), (c), (d), and (e) for each border
of said one map section, with its corresponding
adjacent border on the adjacent map section;

() repeating steps (b) through (f) until all of the edges
of the small map sections are matched;

(h) joining said small map sections at the matched
edges; and

(i) producing a final map product from the joined
small map sections.

2. A method of producing a map according to claim
1, wherein the edgematching in step (d) includes the
following steps:

(d)(1) edgematching each node along the border arc
of one map section to its adjacent map sections by
matching the nodes with the most closely corre-
sponding node, within a predetermined range and
the predetermined tolerance distance:

(d)(2) if no match for a node is found within the pre-
determined range and within the predetermined
tolerance distance, edgematching the unmatched
nodes along the border arc with the nodes having
the most closely corresponding node, within said
predetermined range, along the adjacent border
arc within an expanded tolerance distance; and

(d)(3) if no match for a node is found within the pre-
determined range and within the expanded toler-
ance distance, indicate a matching error.

3. A method of producing a map according to claim
1, wherein said type of map coverages are chosen from
the group consisting of: hydrology coverage, road cov-
erage, railroad coverage, and miscellaneous transporta-
tion coverage. :

4. A method of producing a map according to claim
3, wherein said final map product includes at least two
of said map coverages, one superimposed over the
other.

5. A method of producing a map according to claim
2, wherein the expanded tolerance distance is five times
the predetermined tolerance distance.

6. A method of producing a map according to claim
1, wherein the converted data of step (c) is put into the
following format:

AwwBxyyyCzD,

5

15

20

25

30

3

w

45

50

55

65

82
wherein:

A represents a coverage type and is selected from the
group consisting of H, R, T, or M, which stand for
Hydrology, Roads, Trains or Miscellaneous trans-
portation, respectively;

ww represents a number from 0 to 90 which stands
for the number of degrees latitude from the equator
of a southeastern corner of the small map sections;

B represents a direction selected from the group con-
sisting of N or S, which stand for North or South of
the equator, respectively;

x represents a decimal degree selected from the group

" of0, 1,2, 3,56, 7, or 8 which stand for 0.0 de-
grees, 0.125 degrees, 0.25 degrees, 0.375 degrees,
0.5 degrees, 0.625 degrees, 0.75 degrees and 0.875
degrees, respectively;

yyy represents a number from 0 to 180 which stands
for the number of degrees longitude from the prime
meridian in Greenwich of the southeastern corner
of the small map sections;

C represents a direction selected from the group con-
sisting of W or E, which stand for West or East of
the prime meridian in Greenwich, respectively;

z represents a decimal degree selected from the group
of 0, 1, 2, 3, 5, 6, 7, or 8 which stand for 0.0 de-
grees, 0.125 degrees, 0.25 degrees, 0.375 degrees,
0.5 degrees, 0.625 degrees, 0.75 degrees and 0.875
degrees, respectively; and

D represents a type of data to be converted into and
is selected from the group consisting of A, P, or N,
which stand for Area, Points or Nodes, respec-
tively.

7. A computerized method for producing a map from
a plurality of small map sections, said small map sections
being in digital line graph format, the method compris-
ing:

(a) inputting data into a computer corresponding to
geographical features on the earth’s surface as raw
map data, said raw map data relating to small sec-
tions of the earth’s surface in digital line graph
format;

(b) locating border arcs in said raw map data, wherein
said border arcs include nodes along the border
arc;

(c) converting said raw map data into a format which
identifies the latitude and longitudinal coordinates,
and a type of map coverage;

(d) edgematching each node along the border arc of
one map section to its adjacent map sections by
matching the nodes along the border arc with the
most closely corresponding node along an adjacent
border arc, within a predetermined range and a
predetermined tolerance distance; :

(e) using the computer, repeating steps (b)., (¢), and
(d), for each border of said one map section, with
its corresponding adjacent border on the adjacent
map section;

(f) using the computer, repeating steps (b) through (e)
until all of the edges of the small map sections are
matched;

(g) joining said small map sections at the matched
edges; and

(h) producing a map product from the joined small
map sections.

8. A method of producing a map according to claim
7, wherein the edgematching in step (d) includes the
following steps:

5,150,295

83

(d) 1) edgematching each node along the border arc
of one map section to its adjacent map sections by
matching the nodes with the most closely corre-
sponding node, within the predetermined range
and the predetermined tolerance distance;

(d) (2) if no match for a node is found within the
predetermined range and within the predetermined
tolerance distance, edgematching the unmatched
nodes along the border arc with the nodes having
the most closely corresponding node, within said
predetermined range, along the adjacent border
arc within an expanded tolerance distance; and

(d) (3) if no match for a node is found within the
predetermined range and within the expanded tol-
erance distance, indicate a matching error.

9. A method of producing a map according to claim
8, wherein the expanded tolerance distance is five times
the predetermined tolerance distance.

10. A method of producing a map according to claim
7, wherein said type of map coverages are chosen from
the group consisting of: hydrology coverage, road cov-
erage, railroad coverage, and miscellaneous transporta-
tion coverage.

11. A method of producing a map according to claim
10, wherein said final map product includes at least two
of said map coverages, one superimposed over the
other.

12. A method of producing a map according to claim

7, wherein the converted data of step {c) is put into the
following format:

AwwBxyyyCzD,

10

15

20

25

30

35

40

45

50

55

60

65

84

wherein:

A represents a coverage type and is selected from the
group consisting of H, R, T, or M, which stand for
Hydrology, Roads, Trains or Miscellaneous trans-
portation, respectively;

ww represents a number form 0 to 90 which stands
for the number of degrees latitude from the equator
of a southeastern corner of the small map sections;

B represents a direction selected from the group con-
sisting of N or S, which stand for North or South of
the equator, respectively;

x represents a decimal degree selected from the group
of 0, 1, 2, 3, 5, 6, 7, or 8, which stand for 0.0 de-
grees, 0.125 degrees, 0.25 degrees, 0.375 degrees,
0.5 degrees, 0.625 degrees, 0.75 degrees and 0.875
degrees, respectively;

yyy represents a number form 0 to 180 which stands
for the number of degrees longitudinal from the
prime meridian in Greenwich of the southeastern
corner of the small map sections;

C represents a direction selected from the group con-
sisting of W or E, which stand for West or East of
the prime meridian in Greenwich, respectively;

z represents a decimal degree selected from the group
of 0, 1,2, 3,5, 6, 7, or 8 which stand for 0.0 de-
grees, 0.125 degrees, 0.25 degrees, 0.375 degrees,
0.5 degrees, 0.625 degrees, (.75 degrees and 0.875
degrees, respectively; and

D represents a type of data to be converted into and
is selected from the group consisting of A, P, or N,
which stand for Area, Points or Nodes, respec-

tively.
* * * * %

