Implications of "Peak Oil" for Atmospheric CO₂ and Climate (in preparation)

Pushker Kharecha and Jim Hansen *NASA-GISS / Columbia Earth Inst.*

→ draft copy: <u>pubs.giss.nasa.gov</u> or <u>arxiv.org</u>

Goals/motivation

- Develop emissions trajectories that <u>explicitly</u> incorporate plausible fossil fuel peaks (i.e. <u>resource limitations</u>)
 - Focus on general (simple) mitigation
 scenarios that keep atmospheric CO₂ below
 450 ppm (currently ~382 ppm)
- Guide climate change mitigation policies using plausible mitigation scenarios

Anthropogenic GHG changes

- → Rate and magnitude of changes <u>unprecedented</u> in millions of years
- → this is now basically indisputable...

J. Hansen, Clim. Change 68, 2005

Past sea level vs. temperature

Hansen et al., PTRS-A 365, 2007

- If temp. kept <1°C, sea level probably won't rise over 5-6 m;
- more than $2-3^{\circ}C \Rightarrow$ sea level might rise 15-35 m!
- ⇒ GOAL: KEEP 21st-c. TEMP. BELOW ~1°C

We're **NOT** attempting to...

- pinpoint timing of peaks, or resolving debate over magnitudes (focus is on implications for climate)
 - endorse a specific set of reserve estimates (looked at range, citing common sources)
- debunk IPCC-SRES scenarios ("benchmark" scenarios in modeling studies...are actually useful for bracketing the *range of possibilities*)
- develop probabilistic scenarios (wanted to minimize socioeconomic assumptions, hence took deliberately broad, simple approach)

Definitions

- Proven reserves: Supplies known to exist with high degree of certainty (magnitudes debatable...)
 - Conventional: usable under current/near-term econ., envir., and tech. conditions
 - Unconventional: exist in different form, not (yet) as feasible energetically/economically
- Reserve growth: likely additions to reserves using current/near-term tech. (again, magnitudes vary)
- Except as noted, "peak" refers to Hubbert-type peak (~midpoint of total resource base for each fuel)

General view of fossil fuel peaks

• Mineral geologists realized many decades before Hubbert that use of any finite, geologically constrained resource follows similar pattern...

Assumed resource supplies

Conversions

- Oil: 1 Gt C ≈ 8.2 Gbl ≈ 50 EJ
- Gas: 1 Gt C ≈ 60 Tc.f. ≈ 65 EJ
- Coal: 1 Gt C ≈ 1.7 Gs.t. ≈ 39EJ

Overview of emissions scenarios

- All scenarios reflect global emissions for each fuel
- 1 "business-as-usual" scenario (without mitigation)
- 4 mitigation scenarios
 - Coal emissions phased out by 2050
 - 4 different peak oil emissions trajectories (3 of which simply from published sources)
 - Gas emissions trajectory assumed same in each case

"Business-As-Usual" scenario

21st c. emissions:

~1080 total

~710 coal

~240 oil

~130 gas

2007-2050 emissions:

~430 total

~210 coal

~140 oil

~80 gas

% change, 2007-2050: +30%

"Coal Phase-out" scenario (baseline)

21st c. emissions:

~500 total

~130 coal

~240 oil

~130 gas

2007-2050 emissions:

~330 total

~110 coal

~140 oil

~80 gas

% change, 2007-2050: -57%

Alternative peak oil trajectory

Total resource base: ~3000 Gbl (both cases)

"Fast Oil Use" scenario

Total resource base: ~3000 Gbl (both cases)

% change, 2007-2050: -54%

21st c. emissions:

~520 total

~130 coal

~260 oil

~130 gas

2007-2050 emissions:

~390 total

~110 coal

~200 oil

~80 gas

"Less Oil Reserves" scenario

21st c. emissions:

~430 total

~130 coal

~170 oil

~130 gas

2007-2050 emissions:

~300 total

~110 coal

~120 oil

~80 gas

% change, 2007-2050: -66%

"Peak Oil Plateau" scenario

21st c. emissions:

~550 total

~130 coal

~290 oil

~130 gas

2007-2050 emissions:

~360 total

~110 coal

~180 oil

~80 gas

% change, 2007-2050: -40%

Comparison with SRES scenarios

21st c. emissions:

- A2: ~1800
- •Coal phaseout: ~500
- Fast Oil Use: ~530

- Our BAU lower than SRES BAU
- •Our phaseout scenario far lower than "low" B1, A1T

CO₂ time series calculation

eq. from Shine et al., Clim. Change 68, 2005

→ Drawback: doesn't represent climate feedbacks

Calculated CO₂ vs. data

→ Total fossil fuel CO₂ added to date: >80 ppm

Projected CO₂: BAU

 $CO_2 \sim 580 \text{ ppm by } 2100 \Rightarrow \Delta RF \sim +2.5 \text{ W/m}^2$

 \Rightarrow Warming under 1°C <u>unlikely</u> to be achieved \Rightarrow *DAI*

Projected CO₂: Coal Phase-out

- \Rightarrow 21st-c. \triangle RF \approx +0.8 W/m²
- ⇒ Warming under 1°C achievable

Projected CO₂: Fast Oil Use

- \Rightarrow 21st-c. $\triangle RF \approx +1.1 \text{ W/m}^2$
- ⇒ Warming under 1°C still achievable

Projected CO₂: Less Oil Reserves

- \Rightarrow 21st-c. \triangle RF \approx +0.7 W/m²
- \Rightarrow Warming under 1°C achievable

Projected CO₂: Peak Oil Plateau

- \Rightarrow 21st-c. \triangle RF \approx +1 W/m²
- ⇒ Warming under 1°C achievable

Results summary

Scenario	Peak CO ₂ level	Year of peak
BAU	~580 ppm	~2100
Fast Oil Use	~455 ppm	~2050
Peak Oil Plateau	~450 ppm	~2060
Coal Phase-out	~440 ppm	~2050
Less Oil Reserves	~430 ppm	~2040
IPCC, WEC oil & gas	~420 ppm	~2040
Coal phase-out 2010–2030	~420 ppm	~2030

Conclusions/implications

- BAU ⇒ DAI!; feedbacks almost certain
- Coal phaseout by mid-century would have numerous benefits: minimize feedbacks, keep warming below ~1°C, cleaner air
 - ⇒Sequestering coal emissions must be a top priority
- Peak oil uncertainty: earlier peak "better" than fixed R:E ratio: CO₂ ~15 ppm lower, decline rate doesn't plummet, less tempted to turn to unconv.?
- Large-scale use of unconventional resources w/o sequestration ⇒ dangerous CC guaranteed!

Broad policy recommendations

- COAL EMISSIONS PHASEOUT MUST BE ENACTED SOON!
 - Legally binding global treaty; rising price on carbon emissions domestically
 - Other near term focus should be on energy efficiency and conservation measures
- Viable alternative energy sources after doing FULL energy/carbon accounting
 - carbon-neutral/negative biofuels and renewables; nuclear(?)

Acknowledgements

- Makiko Sato of GISS for extrapolated historical emissions
- Funding sources: NASA Earth Science Res. Div.,
 Hewlett Foundation, G. Lenfest
- ASPO-USA (Sally Odland, Sally Newhall, Randy Udall, Steve Andrews)

Email: pushker@giss.nasa.gov

2007 Houston World Oil Conference

Proceedings

Energy Action for a Healthy Economy and a Clean Environment

- Conference Program
- Conference DVD
- Video Highlights
- Peak Oil Review
- **ASPO-USA**