How Good Is Our Bet on Biofuels?

Kyriacos Zygourakis

A.J. Hartsook Professor and Chair

E-mail: kyzy@rice.edu

Production of Biofuels

Facts or Hype?

- Biofuels help us fight global warming by reducing greenhouse gas emissions!
- There is enough excess biomass or agricultural waste in the U.S. to produce more than 130 billion gallons of ethanol per year. This is equivalent to more than 50% of our 2005 gasoline consumption!
- Biofuels can reduce our dependence on fossil fuels and imported oil!

Questions

- How much fuel can we produce sustainably from each source?
- How much energy do we have to spend to produce a gallon of biofuel?
- Will we reduce carbon dioxide emissions by displacing gasoline (or petro-diesel) with this biofuel?
- Are there any other effects of biofuel production on the environment? On our water resources? On food production?

Corn Ethanol

U.S. Corn Ethanol Production

Source: DOE, Energy Information Administration (EIA), 2007

Land Required to Meet U.S. Gasoline Needs with Corn Ethanol

Energy Balance for Corn Ethanol

Energy Metric

Net Energy Ratio (NER) :

Energy Balance for Corn Ethanol

Efficiency of Solar Energy Conversion = 0.027%

Data from Farrell et al., Science, 181, 506 (2006)

Energy Balance for Corn Ethanol

Data from Farrell et al., *Science*, **181**, 506 (2006); Patzek, *Crit. Rev. Plant Sci.*, **23**, 519-567 (2004); Groode and Heywood, LFEE-2007-02 RP (2007); Hill et. al, *PNAS*, **103**, 11206-11212 (2006)

GHG Emissions for Corn Ethanol

Data from Farrell et al., Science, 181, 506 (2006); * Groode and Heywood, LFEE-2007-02 RP (2007)

Cellulosic Ethanol

Ethanol produced from:

- agricultural waste (corn stover), or
- energy crops (switchgrass, poplar tree)

Corn Stover

Switchgrass

Poplar

1.3 Billion Ton Scenario

Goal

- By 2030, replace 30% of U.S. gasoline consumption in 2004 with cellulosic ethanol.
- DOE estimate: 750 million tons of dry biomass will be needed to produce this amount of ethanol.

Potential

- More than *1.3 billion tons of dry biomass* from forest and agricultural resources through:
- Increased yields
- No-till cultivation
- Perennial crops on 55 million acres (switchgrass, poplar trees)

Energy Balance for Switchgrass ¹

Efficiency of Solar Energy Conversion = 0.185%

Data from Farrell et al., Science, 181, 506 (2006)

Land Required to Meet U.S. Gasoline Needs w/ Cellulosic Ethanol

Data from Farrell et al., Science, 181, 506 (2006)

How much land will we need?

Energy Balance for Switchgrass²

Efficiency of Solar Energy Conversion = 0.110%

Land Required to Meet U.S. Gasoline Needs w/ Cellulosic Ethanol

Percentage of 2005 U.S. Gasoline Consumption

How much land will we need?

Biodiesel

Land Required to Meet U.S. Diesel Needs with Biodiesel

Percentage of 2005 U.S. Petroleum Diesel Consumption

Energy Balance for Biodiesel

2 1.9 Positive Energy Balance 1.3 0.9 **Negative** 0.8 Energy Balance 0 Soybean Soybean Soybean Corn **Biodiesel** Ethanol **Biodiesel Biodiesel** Hill et al. Hill e. al. Pimentel/Patzek Sheehan et al. Sheehan et al., Pimentel and Patzek, Hill et al., PNAS, **103**, 11206-11210 NREL Report NRR, 14, 65-76 (2006)TP-580-24772 (2005)(1998)

Net Energy Ratio

GHG Emissions for Biodiesel

Data from Hill et al., PNAS, 103, 11206-11210 (2006)

Biodiesel vs. Cellulosic Ethanol

	Cellulosic Ethanol	Biodiesel	
Technology	Under development	Here now	
	Large capital investment	Low capital investment	
Yield (gallons / acre)	High	Low	
Small Scale?	No	Yes	

Some Remarks

- Both corn ethanol and biodiesel can only meet a small fraction of the U.S. needs for liquid transportation fuels.
- GHG emissions from corn ethanol are similar to those of gasoline and its energy balance is marginal at best.
- GHG emissions from biodiesel are lower than petrodiesel and it can be easily produced and deployed locally. But, doubts about its energy balance remain.
- Significant uncertainties still remain about cellulosic ethanol. Major technical challenges lie ahead and its energy balance may not be as favorable as claimed by proponents.

Thank you. Questions?

U.S. Corn Ethanol Statistics

2006 U.S. corn production:
2006 harvested corn acreage:
Fraction of corn converted to ethanol:
2007 corn acreage planted (estimate):
2006 Ethanol production:
2017 target:

Number of ethanol plants: Current ethanol production capacity: Ethanol plants under construction: Additional production capacity: Business proposals for more plants: 267.6 million tons
70.65 million
17.1% (~12 million acres)
90.5 million acres
4.85 billion gallons
35 billion gallons

105
5 billion gallons
42
3 billion gallons
300

U.S. and Brazil

	U.S	Brazil	
Population, million inhabitants	300	184	
Total fleet of vehicles	230	28	
Vehicles per inhabitant	0.77	0.15	
Ethanol production, billion gallons per year	4.85	4.8	
Gasoline replaced, percentage	2.5%	50%	
30% of U.S. gasoline contains 10% ethanol (4.2 billion gallons)			

Switchgrass Annual Yields

	Crop Yield (dry tons) / ha		Crop Yield (dry tons) / ha
Industry claim - Now ^a	12.5	Lemus et al., 2002 d Biomass Bioenergy, 23, 433-442	6.8 - 13.1
Industry claim - Future ^a	25.0	Lewandowski et al., 2003 Biomass Bioenergy, 25, 335-361	5 - 23 Europe
Cassida et al., 2005 ^b Crop Science, 45, 673-681 and 682-692	5.82 - 14.97	McLaughlin et al., 2005 ^e Biomass Bioenergy, 28, 515-535	9.8 - 16.6 va, tn, wv, ky, nc
Lee and Boe, 2005 ^c Crop Science, 45, 2583-2590	2 - 12	ibid	5.5-13.3 ^{TX}
Berdahl et al., 2005 Agronomy J., 97, 549-555	3.20 - 12.48	ibid	10.7-19.5 тх, ак, la

^a logen presentation; ^b Average over 3 years for upland and lowland genotypes - Annual yield depends on precipitation; ^c Annual yield depends on precipitation; ^d Average over 3 years; ^e Best 1-year yield: 34.6 Mg/ha

Production of Corn Ethanol

Cellulosic Ethanol Process Steps

Oil Provides More Than Fuels!

The Future of Biomass

How effective will be the cellulosic ethanol program?

Solar Energy

2007 Houston World Oil Conference

Proceedings

Energy Action for a Healthy Economy and a Clean Environment

- Conference Program
- Conference DVD
- Video Highlights
- Peak Oil Review
- **ASPO-USA**